Monazite as a suitable actinide waste form

Abstract The conditioning of radioactive waste from nuclear power plants and in some countries even of weapons plutonium is an important issue for science and society. Therefore the research on appropriate matrices for the immobilization of fission products and actinides is of great interest. Beyond the widely used borosilicate glasses, ceramics are promising materials for the conditioning of actinides like U, Np, Pu, Am, and Cm. Monazite-type ceramics with general composition LnPO4 (Ln = La to Gd) and solid solutions of monazite with cheralite or huttonite represent important materials in this field. Monazite appears to be a promising candidate material, especially because of its outstanding properties regarding radiation resistance and chemical durability. This article summarizes the most recent results concerning the characterization of monazite and respective solid solutions and the study of their chemical, thermal, physical and structural properties. The aim is to demonstrate the suitability of monazite as a secure and reliable waste form for actinides.

[1]  B. Glorieux,et al.  Synthesis and sintering of a monazite–brabantite solid solution ceramic for nuclear waste storage , 2006 .

[2]  Chunhua Yan,et al.  General Synthesis and Characterization of Monocrystalline Lanthanide Orthophosphate Nanowires , 2003 .

[3]  R. Hay,et al.  Synthesis of Nanosized Spherical Rhabdophane Particles , 2005 .

[4]  L. Boatner,et al.  Coordination geometry and structural determinations of SmPO4, EuPO4 and GdPO4 , 1985 .

[5]  H. Keppler Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks , 1993 .

[6]  K. Hong,et al.  Sintering, microstructure and microwave dielectric properties of rare earth orthophosphates, RePO4 (Re = La, Ce, Nd, Sm, Tb, Dy, Y, Yb) , 2009 .

[7]  B. Glorieux,et al.  Synthesis and sintering of a monazite–brabantite solid solution ceramics using metaphosphate , 2009 .

[8]  Chunhua Yan,et al.  Controlled synthesis and characterization of monazite type monocrystalline nanowires of mixed lanthanide orthophosphates , 2004 .

[9]  J. Devidal,et al.  Solubility measurements of synthetic neodymium monazite as a function of temperature at 2 kbars, and aqueous neodymium speciation in equilibrium with monazite , 2010 .

[10]  L. Boatner,et al.  The structure of cerium orthophosphate, a synthetic analogue of monazite , 1981 .

[11]  K. Gatedal,et al.  Crystal chemistry of REEXO4 compounds (X = P, As, V). I. Paragenesis and crystal structure of phosphatian gasparite-(Ce) from the Kesebol Mn-Fe-Cu deposit, Västra Götaland, Sweden , 2004 .

[12]  B. Yan,et al.  LnPO4: RE3+ (La = La, Gd; RE = Eu, Tb) nanocrystals: solvo-thermal synthesis, microstructure and photoluminescence , 2010 .

[13]  John M. Hughes,et al.  Crystal chemistry of the monazite and xenotime structures , 1995 .

[14]  W. J. Weber,et al.  Radiation effects in nuclear waste forms for high-level radioactive waste , 1995 .

[15]  R. Hay,et al.  Monazite Coatings on Fibers: II, Coating without Strength Degradation , 2001 .

[16]  R. Wirth,et al.  Contrasting response of ThSiO4 and monazite to natural irradiation , 2007 .

[17]  R. Konings,et al.  The low-temperature heat capacity of (Pu0.1La0.9)PO4 , 2007 .

[18]  Rodney C. Ewing,et al.  Iconography : Safe management of actinides in the nuclear fuel cycle: Role of mineralogy , 2011 .

[19]  Y. Hikichi,et al.  Thermal, mechanical and chemical properties of sintered monazite-(La, Ce, Nd or Sm) , 1997 .

[20]  D. Bregiroux,et al.  Solid-state synthesis of monazite-type compounds containing tetravalent elements. , 2007, Inorganic chemistry.

[21]  G. Ou,et al.  Hydrothermal synthesis of LaPO4:Ce3+,Tb3+@LaPO4 core/shell nanostructures with enhanced thermal stability , 2010 .

[22]  YuxxnNc Nr,et al.  Crystal chemistry of the monazite and xenotime structures , 2007 .

[23]  A. Xu,et al.  Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires. , 2003, Journal of the American Chemical Society.

[24]  F. Audubert,et al.  Immobilisation of actinides in phosphate matrices , 2004 .

[25]  T. Mah,et al.  Synthesis and characterization of lanthanum phosphate sol for fibre coating , 1997 .

[26]  Jun Lin,et al.  Corrigendum to “Preparation and luminescence properties of Ce3+ and/or Tb3+ doped LaPO4 nanofibers and microbelts by electrospinning” [Journal of Solid State Chemistry 182 (2009) 698–708] , 2009 .

[27]  H. Henschel,et al.  Unit Cells of the Monazite‐Type Rare‐Earth Phosphates , 1965 .

[28]  T. Advocat,et al.  Plutonium incorporation in phosphate and titanate ceramics for minor actinide containment , 2006 .

[29]  C. Jian,et al.  Synthesis and sintering of LaPO4 powder and its application , 2003 .

[30]  L. Boatner,et al.  The structures of three lanthanide orthophosphates , 1983 .

[31]  R. Taylor,et al.  The immobilization of high level radioactive wastes using ceramics and glasses , 1997 .

[32]  F. Poitrasson,et al.  Experimental determination of synthetic NdPO4 monazite end-member solubility in water from 21°C to 300°C: implications for rare earth element mobility in crustal fluids , 2004 .

[33]  Huaiyong Li,et al.  Bonding characteristics, thermal expansibility, and compressibility of RXO(4) (R = rare earths, X = P, As) within monazite and zircon structures. , 2009, Inorganic chemistry.

[34]  A. Kontos,et al.  High pressure Raman study of DyPO4 at room and low temperatures , 2007 .

[35]  R. Ewing,et al.  Ion beam induced amorphization of monazite , 1996 .

[36]  G. Mccarthy,et al.  The crystal chemistry of cerium in the monazite structure-type phase of tailored-ceramic nuclear waste forms , 1981 .

[37]  Y. Hikichi Synthesis of monazite (RPO4, R=La, Ce, Nd, or Sm) by solid state reaction , 1991 .

[38]  F. Poitrasson,et al.  An experimental study of the dissolution stoichiometry and rates of a natural monazite as a function of temperature from 50 to 230 °C and pH from 1.5 to 10 , 2002 .

[39]  A. Kontos,et al.  Raman study of tetragonal TbPO4 and observation of a first-order phase transition at high pressure , 2008 .

[40]  R. Podor,et al.  Preparation of Optimized Uranium and Thorium Bearing Brabantite or Monazite/Brabantite Solid Solutions , 2008 .

[41]  M. Haase,et al.  Wet‐Chemical Synthesis of Doped Colloidal Nanomaterials: Particles and Fibers of LaPO4:Eu, LaPO4:Ce, and LaPO4:Ce,Tb , 1999 .

[42]  M. Yagovkina,et al.  Self-Irradiation of Monazite Ceramics: Contrasting Behavior of PuPO4 and (La,Pu)PO4 Doped with Pu-238 , 2004 .

[43]  W. J. Weber,et al.  Radiation damage in zircon and monazite , 1998 .

[44]  Donald H. Bilderback,et al.  In situ synchrotron-radiation XRF study of REE phosphate dissolution in aqueous fluids to 800 °C , 2007 .

[45]  R. Podor,et al.  Actinide solubility-controlling phases during the dissolution of phosphate ceramics , 2007 .

[46]  T. Thongtem,et al.  Facile hydrothermal synthesis and optical properties of monoclinic CePO 4 nanowires with high aspect ratio , 2012 .

[47]  S. Wood,et al.  The aqueous geochemistry of the rare earth elements. Part XIV: The solubility of rare earth element phosphates from 23 to 150 °C , 2005 .

[48]  Y. Eyal,et al.  Leaching of uranium and thorium from monazite: I. Initial leaching , 1990 .

[49]  Y. Hikichi,et al.  Syntheses of rare earth orthophosphates. , 1978 .

[50]  S. Wood,et al.  The aqueous geochemistry of the rare-earth elements and yttrium 4. Monazite solubility and REE mobility in exhalative massive sulfide-depositing environments , 1994 .

[51]  Rudy J. M. Konings,et al.  High-temperature calorimetry of (La1−xLnx)PO4 solid solutions , 2007 .

[52]  Y. Eyal,et al.  Leaching of uranium and thorium from monazite: III. Leaching of radiogenic daughters , 1990 .

[53]  L. Boatner,et al.  Structural refinements of praseodymium and neodymium orthophosphate , 1985 .

[54]  Elissaios Stavrou,et al.  Theoretical and experimental study of the structural stability of TbPO 4 at high pressures , 2010 .

[55]  E. Oelkers,et al.  Phosphates and Nuclear Waste Storage , 2008 .

[56]  Rodney C. Ewing,et al.  Radiation-Induced Amorphization , 2000 .

[57]  R. Ewing,et al.  A comparison of radiation effects in crystalline ABO4 -type phosphates and silicates , 2000, Mineralogical Magazine.

[58]  R. Konings,et al.  The High-temperature Behaviour of PuPO4 Monazite and Some Other Related Compounds , 2008 .

[59]  R. Podor,et al.  Preparation and characterization of lanthanum-gadolinium monazites as ceramics for radioactive waste storage , 2003 .

[60]  W. J. Weber,et al.  A Review of Radiation Effects in Solid Nuclear Waste Forms , 1983 .

[61]  Mark T. Robinson,et al.  Computer simulation of collision cascades in monazite , 1983 .

[62]  D. Holtstam,et al.  Crystal chemistry of REEXO4 compounds (X = P, As, V). II. Review of REEXO4 compounds and their stability fields , 2004 .

[63]  S. Wood The aqueous geochemistry of the rare-earth elements and yttrium: 2. Theoretical predictions of speciation in hydrothermal solutions to 350°C at saturation water vapor pressure , 1990 .

[64]  Jean-Marc Montel,et al.  Iconography : Minerals and design of new waste forms for conditioning nuclear waste , 2011 .

[65]  N. Dacheux,et al.  Chemistry of tetravalent actinide phosphates—Part II , 2004 .

[66]  U. Schärer,et al.  Microstructure of 24-1928 Ma concordant monazites; implications for geochronology and nuclear waste deposits , 2004 .

[67]  Rodney C. Ewing,et al.  THE DESIGN AND EVALUATION OF NUCLEAR-WASTE FORMS: CLUES FROM MINERALOGY , 2001 .

[68]  J. Chorover,et al.  Rare earth element release from phosphate minerals in the presence of organic acids , 2010 .

[69]  R. Feigelson Synthesis and Single‐Crystal Growth of Rare‐Earth Orthophosphates , 1964 .

[70]  P. Šulcová,et al.  Comparison of the crystallisation and solid state reaction methods for the preparation of rare-earth orthophosphates , 2009 .

[71]  R. Ewing,et al.  Metamict minerals: Natural analogues for radiation damage effects in ceramic nuclear waste forms , 1988 .

[72]  D. Bregiroux,et al.  Plutonium and americium monazite materials: Solid state synthesis and X-ray diffraction study , 2007 .

[73]  Steven J. Zinkle,et al.  Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium , 1998 .

[74]  W. J. Weber,et al.  Materials Science of High-Level Nuclear Waste Immobilization , 2009 .

[75]  Y. Hikichi,et al.  Melting Temperatures of Monazite and Xenotime , 1987 .

[76]  D. Bregiroux,et al.  Sintering and microstructure of rare earth phosphate ceramics REPO4 with RE = La, Ce or Y , 2006 .

[77]  R. Podor,et al.  Immobilization of tetravalent actinides in phosphate ceramics , 2006 .

[78]  R. Ewing,et al.  Florencite-(La) with fissiogenic REEs from a natural fission reactor at Bangombé, Gabon , 1996 .

[79]  Y. Eyal,et al.  Leaching of uranium and thorium from monazite: II. Elemental leaching , 1990 .

[80]  D. Avignant,et al.  X-ray diffraction study of brabantite–monazite solid solutions , 2002 .

[81]  R. S. Biasi,et al.  Cell volumes of LaPO4–CePO4 solid solutions , 1987 .

[82]  S. Wood The aqueous geochemistry of the rare-earth elements and yttrium: 2. Theoretical predictions of speciation in hydrothermal solutions to 350°C at saturation water vapor pressure , 1990 .

[83]  R. Wirth,et al.  An XRD, TEM and Raman study of experimentally annealed natural monazite , 2002 .

[84]  N. Dacheux,et al.  Chemistry of tetravalent actinide phosphates—Part I , 2004 .

[85]  R C Ewing,et al.  Nuclear waste forms for actinides. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Marcus Walter,et al.  Excess properties of the (Ln2−2xCaxThx)(PO4)2 (Ln = La, Ce) solid solutions , 2008 .

[87]  S. Repina,et al.  Florencite-(Sm)—(Sm,Nd)Al3(PO4)2(OH)6: A new mineral species of the alunite-jarosite group from the subpolar urals , 2011 .

[88]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[89]  A. T. Aldred Cell volumes of APO4, AVO4, and ANbO4 compounds, where A = Sc, Y, La–Lu , 1984 .

[90]  R. Ewing,et al.  Electron-irradiation-induced nucleation and growth in amorphous LaPO_4, ScPO_4, and zircon , 1997 .

[91]  R. Ewing,et al.  Displacive radiation effects in the monazite- and zircon-structure orthophosphates , 1997 .

[92]  J. Roques,et al.  Comparative behavior of britholites and monazite/brabantite solid solutions during leaching tests: a combined experimental and DFT approach. , 2008, Inorganic chemistry.

[93]  R. Podor,et al.  Crystal chemistry of the monazite structure , 2011 .

[94]  L. Boatner Synthesis, Structure, and Properties of Monazite, Pretulite, and Xenotime , 2002 .

[95]  G. Lumpkin,et al.  Nuclear waste forms , 2004, Geological Society, London, Special Publications.

[96]  C. Manning,et al.  Solubility of CePO4 monazite and YPO4 xenotime in H2O and H2O–NaCl at 800 °C and 1 GPa: Implications for REE and Y transport during high-grade metamorphism , 2011 .

[97]  Crystal data for rare earth orthophosphates of the monazite structure-type , 1981 .

[98]  P. Trocellier Chemical durability of high level nuclear waste forms , 2001 .

[99]  G. Liu,et al.  Microscopic effects of self-radiation damage in ^244Cm-doped LuPO_4 crystals , 2001 .

[100]  A. Orlova Chemistry and structural chemistry of anhydrous tri- and tetravalent actinide orthophosphates , 2007 .

[101]  Rodney C. Ewing,et al.  Phosphates as Nuclear Waste Forms , 2002 .

[102]  R. Konings,et al.  Structural investigation of the synthetic CaAn(PO4)2 (An = Th and Np) cheralite-like phosphates , 2008 .

[103]  V. T. Surikov,et al.  Behavior of monazite components in humic acid solutions , 2009 .

[104]  Lynn A. Boatner,et al.  Thermochemistry of rare-earth orthophosphates , 2001 .

[105]  Radiation Effects in Nonmetals: Amorphization, Phase Decomposition, and Nanoparticles , 1998 .

[106]  M. Ocaña,et al.  Citrate mediated synthesis of uniform monazite LnPO4 (Ln = La, Ce) and Ln:LaPO4 (Ln = Eu, Ce, Ce + Tb) spheres and their photoluminescence. , 2010, Journal of colloid and interface science.

[107]  G. P. Shironosova,et al.  Thermodynamic model of REE leaching from monazite by hydrothermal fluids , 2008 .

[108]  B. Sales,et al.  A comparison of the corrosion characteristics of synthetic monazite and borosilicate glass containing simulated nuclear defense waste , 1983 .

[109]  Steven J. Zinkle,et al.  Radiation effects in ceramics , 1994 .

[110]  A. Navrotsky,et al.  Thermodynamic properties of CaTh(PO4)2 synthetic cheralite , 2008 .

[111]  Xin Wang,et al.  Study on Hydrothermal Synthesis of LaPO4:Eu3+ Materials , 2011 .

[112]  D. Többens,et al.  A Raman spectroscopic study on the structural disorder of monazite–(Ce) , 2012, Mineralogy and Petrology.

[113]  G. Lumpkin,et al.  Ceramic waste forms for actinides , 2006 .

[114]  Jun Lin,et al.  Preparation and luminescence properties of Ce3+ and/or Tb3+ doped LaPO4 nanofibers and microbelts by electrospinning , 2009 .

[115]  B. Glorieux,et al.  Ion Beam Radiation Effects in Monazite , 2008 .

[116]  S. Yudintsev,et al.  Natural and artificial minerals as matrices for immobilization of actinides , 2007 .

[117]  I. Szczygieł,et al.  Modified Pechini synthesis of La, Ce, and Pr orthophosphates and characterization of obtained powders , 2011 .

[118]  L. Cartz,et al.  Heavy ion bombardment of monoclinic thsio4, tho2 and monazite , 1981 .

[119]  R. Ewing,et al.  ION-BEAM-INDUCED AMORPHIZATION OF LAPO4 AND SCPO4 , 1997 .