ManifoldOptim: An R Interface to the ROPTLIB Library for Riemannian Manifold Optimization

Manifold optimization appears in a wide variety of computational problems in the applied sciences. In recent statistical methodologies such as sufficient dimension reduction and regression envelopes, estimation relies on the optimization of likelihood functions over spaces of matrices such as the Stiefel or Grassmann manifolds. Recently, Huang, Absil, Gallivan, and Hand (2016) have introduced the library ROPTLIB, which provides a framework and state of the art algorithms to optimize real-valued objective functions over commonly used matrix-valued Riemannian manifolds. This article presents ManifoldOptim, an R package that wraps the C++ library ROPTLIB. ManifoldOptim enables users to access functionality in ROPTLIB through R so that optimization problems can easily be constructed, solved, and integrated into larger R codes. Computationally intensive problems can be programmed with Rcpp and RcppArmadillo, and otherwise accessed through R. We illustrate the practical use of ManifoldOptim through several motivating examples involving dimension reduction and envelope methods in regression.

[1]  Y. Chikuse Statistics on special manifolds , 2003 .

[2]  Bamdev Mishra,et al.  Manopt, a matlab toolbox for optimization on manifolds , 2013, J. Mach. Learn. Res..

[3]  Benedikt Wirth,et al.  Optimization Methods on Riemannian Manifolds and Their Application to Shape Space , 2012, SIAM J. Optim..

[4]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[5]  R. Dennis Cook,et al.  Partial envelopes for efficient estimation in multivariate linear regression , 2011 .

[6]  R. Dennis Cook,et al.  Inner envelopes: Efficient estimation in multivariate linear regression , 2012 .

[7]  Conrad Sanderson,et al.  RcppArmadillo: Accelerating R with high-performance C++ linear algebra , 2014, Comput. Stat. Data Anal..

[8]  R. Dennis Cook,et al.  GrassmannOptim: An R Package for Grassmann Manifold Optimization , 2012 .

[9]  Paul Van Dooren,et al.  Numerical Linear Algebra Techniques for Systems and Control , 1994 .

[10]  John M. Lee Introduction to Topological Manifolds , 2000 .

[11]  R. Christensen,et al.  Fisher Lecture: Dimension Reduction in Regression , 2007, 0708.3774.

[12]  Elizabeth R. Jessup,et al.  Matrices, Vector Spaces, and Information Retrieval , 1999, SIAM Rev..

[13]  Hiroyuki Sato,et al.  A Riemannian Optimization Approach to the Matrix Singular Value Decomposition , 2013, SIAM J. Optim..

[14]  R. Cook,et al.  Likelihood-Based Sufficient Dimension Reduction , 2009 .

[15]  Dirk Eddelbuettel,et al.  Rcpp: Seamless R and C++ Integration , 2011 .

[16]  R. Cook Regression Graphics , 1994 .

[17]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[18]  Jack Dongarra,et al.  LAPACK Users' Guide, 3rd ed. , 1999 .

[19]  K. Adragni Minimum average deviance estimation for sufficient dimension reduction , 2016, 1611.00400.

[20]  Y. Wong Differential geometry of grassmann manifolds. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[22]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[23]  G. Golub,et al.  Tracking a few extreme singular values and vectors in signal processing , 1990, Proc. IEEE.

[24]  I. Priede,et al.  Long-term changes in deep-water fish populations in the northeast Atlantic: a deeper reaching effect of fisheries? , 2009, Proceedings of the Royal Society B: Biological Sciences.

[25]  Bing Li,et al.  ENVELOPE MODELS FOR PARSIMONIOUS AND EFFICIENT MULTIVARIATE LINEAR REGRESSION , 2010 .

[26]  R. Cook,et al.  Covariance reducing models : An alternative to spectral modelling of covariance matrices , 2008 .

[27]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[28]  Wen Huang,et al.  A Broyden Class of Quasi-Newton Methods for Riemannian Optimization , 2015, SIAM J. Optim..

[29]  R. Dennis Cook,et al.  Foundations for Envelope Models and Methods , 2015 .

[30]  Wen Huang,et al.  ROPTLIB , 2018, ACM Trans. Math. Softw..

[31]  R. Dennis Cook,et al.  Scaled envelopes: scale-invariant and efficient estimation in multivariate linear regression , 2013 .

[32]  Wen Huang,et al.  A Riemannian symmetric rank-one trust-region method , 2014, Mathematical Programming.

[33]  R. Dennis Cook,et al.  Dimension Reduction in Regressions With Exponential Family Predictors , 2009 .

[34]  Pierre-Antoine Absil,et al.  Trust-Region Methods on Riemannian Manifolds , 2007, Found. Comput. Math..

[35]  Dirk Eddelbuettel,et al.  Exposing C++ functions and classes with Rcpp modules , 2016 .

[36]  H. Tong,et al.  Article: 2 , 2002, European Financial Services Law.