Analyse et représentation en deux dimensions de traces pour le suivi de l’apprenant

The learner follow-up in problem solving is a hard issue. It is more difficult when there are a lot of learners or when those learners use distance learning. We propose in this paper a two-dimensional graphic representation of student's traces. To achieve this goal, we use and modify numerical analysis algorithms (automatic dimensionality reduction algorithms like Self Organizing Map and Stochastic Neighbour Embedding). We also propose a new distance between sets whose elements have semantic similarity. Finally, we validate and improve our algorithm with simulated data and experimental data.

[1]  Tariq Samad,et al.  Modeling student knowledge with self-organizing feature maps , 1995, IEEE Trans. Syst. Man Cybern..

[2]  B. Bloom Taxonomy of educational objectives , 1956 .

[3]  Geoffrey E. Hinton,et al.  Stochastic Neighbor Embedding , 2002, NIPS.

[4]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[5]  Jean-Marc Labat EIAH : Quel retour d'informations pour le tuteur ? , 2002 .

[6]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[7]  Yves Lechevallier,et al.  Une adaptation des cartes auto-organisatrices pour des données décrites par un tableau de dissimilarités , 2007, ArXiv.

[8]  David Genest Recherche d'information par transformation de graphes dans le modèle des graphes conceptuels , 2002, Ingénierie des Systèmes d Inf..

[9]  M. Besson À propos des distances entre ensembles de parties , 1973 .

[10]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[11]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[12]  Vania Dimitrova,et al.  CourseVis: A graphical student monitoring tool for supporting instructors in web-based distance courses , 2007, Int. J. Hum. Comput. Stud..

[13]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[14]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[15]  Chien-Sing Lee,et al.  Student modeling using principal component analysis of SOM clusters , 2004, IEEE International Conference on Advanced Learning Technologies, 2004. Proceedings..