SOD1 overexpression in paraventricular nucleus improves post-infarct myocardial remodeling and ventricular function

[1]  Kevin Kit Parker,et al.  Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function , 2011, Pflügers Archiv - European Journal of Physiology.

[2]  Juan Gao,et al.  c-Src in paraventricular nucleus modulates sympathetic activity and cardiac sympathetic afferent reflex in renovascular hypertensive rats , 2011, Pflügers Archiv - European Journal of Physiology.

[3]  R. Davisson,et al.  In Vivo Bioluminescence Imaging Reveals Redox-Regulated Activator Protein-1 Activation in Paraventricular Nucleus of Mice With Renovascular Hypertension , 2011, Hypertension.

[4]  F. Leenen,et al.  Central neuronal activation and pressor responses induced by circulating ANG II: role of the brain aldosterone-"ouabain" pathway. , 2010, American journal of physiology. Heart and circulatory physiology.

[5]  R. Davisson,et al.  Silencing Nox4 in the Paraventricular Nucleus Improves Myocardial Infarction–Induced Cardiac Dysfunction by Attenuating Sympathoexcitation and Periinfarct Apoptosis , 2010, Circulation research.

[6]  E. Badoer Role of the hypothalamic PVN in the regulation of renal sympathetic nerve activity and blood flow during hyperthermia and in heart failure. , 2010, American journal of physiology. Renal physiology.

[7]  Juan Gao,et al.  Angiotensin-(1–7) and angiotension II in the rostral ventrolateral medulla modulate the cardiac sympathetic afferent reflex and sympathetic activity in rats , 2010, Pflügers Archiv - European Journal of Physiology.

[8]  L. Ding,et al.  Increased Expression of Integrin-Linked Kinase Attenuates Left Ventricular Remodeling and Improves Cardiac Function After Myocardial Infarction , 2009, Circulation.

[9]  Z.-H. Zhang,et al.  Pharmacological Treatment for Heart Failure: A View From the Brain , 2009, Clinical pharmacology and therapeutics.

[10]  J. Floras,et al.  Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. , 2009, Journal of the American College of Cardiology.

[11]  Bo Xu,et al.  Nucleus of solitary tract mediates cardiac sympathetic afferent reflex in rats , 2009, Pflügers Archiv - European Journal of Physiology.

[12]  G. Grassi,et al.  Sympathetic activation in congestive heart failure: evidence, consequences and therapeutic implications. , 2009, Current vascular pharmacology.

[13]  W. Wang,et al.  Long-term administration of tempol attenuates postinfarct ventricular dysfunction and sympathetic activity in rats , 2009, Pflügers Archiv - European Journal of Physiology.

[14]  M. Zimmerman,et al.  Role of CuZn superoxide dismutase on carotid body function in heart failure rabbits. , 2008, Cardiovascular research.

[15]  Yao Sun Myocardial repair/remodelling following infarction: roles of local factors. , 2008, Cardiovascular research.

[16]  H. Drexler,et al.  Potential novel pharmacological therapies for myocardial remodelling. , 2008, Cardiovascular research.

[17]  W. De,et al.  Paraventricular nucleus is involved in the central pathway of cardiac sympathetic afferent reflex in rats , 2008, Experimental physiology.

[18]  H. Hashimoto,et al.  Manganese superoxide dismutase polymorphism affects the oxidized low-density lipoprotein-induced apoptosis of macrophages and coronary artery disease. , 2008, European heart journal.

[19]  W. Wang,et al.  Reactive oxygen species in the paraventricular nucleus mediate the cardiac sympathetic afferent reflex in chronic heart failure rats , 2007, European journal of heart failure.

[20]  Lie Gao,et al.  Exercise Training Normalizes Sympathetic Outflow by Central Antioxidant Mechanisms in Rabbits With Pacing-Induced Chronic Heart Failure , 2007, Circulation.

[21]  L. Golfman,et al.  Lack of NF-κB1 (p105/p50) attenuates unloading-induced downregulation of PPARα and PPARα-regulated gene expression in rodent heart , 2007 .

[22]  I. Zucker,et al.  Novel Mechanisms of Sympathetic Regulation in Chronic Heart Failure , 2006, Hypertension.

[23]  Lie Gao,et al.  Simvastatin Therapy Normalizes Sympathetic Neural Control in Experimental Heart Failure: Roles of Angiotensin II Type 1 Receptors and NAD(P)H Oxidase , 2005, Circulation.

[24]  P. Mulder,et al.  Transient reduction in myocardial free oxygen radical levels is involved in the improved cardiac function and structure after long-term allopurinol treatment initiated in established chronic heart failure. , 2005, European heart journal.

[25]  M. Nicholls,et al.  Increased cardiac sympathetic nerve activity following acute myocardial infarction in a sheep model , 2005, The Journal of physiology.

[26]  J. Coote,et al.  A role for the paraventricular nucleus of the hypothalamus in the autonomic control of heart and kidney , 2005, Experimental physiology.

[27]  Lie Gao,et al.  AT1 receptor mRNA antisense normalizes enhanced cardiac sympathetic afferent reflex in rats with chronic heart failure. , 2004, American journal of physiology. Heart and circulatory physiology.

[28]  P. Factor,et al.  In vivo timing of onset of transgene expression following adenoviral-mediated gene transfer. , 2003, Virology.

[29]  D. Sawyer,et al.  &bgr;-Adrenergic Receptor–Stimulated Apoptosis in Cardiac Myocytes Is Mediated by Reactive Oxygen Species/c-Jun NH2-Terminal Kinase–Dependent Activation of the Mitochondrial Pathway , 2003, Circulation research.

[30]  R. Weiss,et al.  The renin-angiotensin-aldosterone system excites hypothalamic paraventricular nucleus neurons in heart failure. , 2002, American journal of physiology. Heart and circulatory physiology.

[31]  A. Malliani,et al.  Emerging Excitatory Role of Cardiovascular Sympathetic Afferents in Pathophysiological Conditions , 2002, Hypertension.

[32]  D. Sawyer,et al.  Adrenergic regulation of cardiac myocyte apoptosis , 2001, Journal of cellular physiology.

[33]  R. Weiss,et al.  Progression of heart failure after myocardial infarction in the rat. , 2001, American journal of physiology. Regulatory, integrative and comparative physiology.

[34]  R. Weiss,et al.  Neurohumoral Regulation in Ischemia‐Induced Heart Failure , 2001 .

[35]  R. Weiss,et al.  Neurohumoral regulation in ischemia-induced heart failure: Role of the forebrain , 2001, Autonomic Neuroscience.

[36]  Jun-Li Liu,et al.  Chronic Exercise Reduces Sympathetic Nerve Activity in Rabbits With Pacing-Induced Heart Failure: A Role for Angiotensin II , 2000, Circulation.

[37]  W. Wang,et al.  Cardiac Sympathetic Afferent Reflexes in Heart Failure , 2000, Heart Failure Reviews.

[38]  V. Palace,et al.  Mobilization of antioxidant vitamin pools and hemodynamic function after myocardial infarction. , 1999, Circulation.

[39]  G. Francis,et al.  Neurohumoral mechanisms involved in congestive heart failure. , 1985, The American journal of cardiology.

[40]  J. Cohn,et al.  Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. , 1984, The New England journal of medicine.

[41]  M. Pfeffer,et al.  Myocardial Infarct Size and Ventricular Function in Rats , 1979, Circulation research.

[42]  Alex F. Chen,et al.  A "love triangle" elicited by electrochemistry: complex interactions among cardiac sympathetic afferent, chemo-, and baroreflexes. , 2007, Journal of applied physiology.

[43]  L. Golfman,et al.  Lack of NF-kappaB1 (p105/p50) attenuates unloading-induced downregulation of PPARalpha and PPARalpha-regulated gene expression in rodent heart. , 2007, Cardiovascular Research.