Sub-micrometer soft lithography of a bulk chalcogenide glass.

We demonstrate, for the first time, time- and cost-effective replication of sub-micrometer features from a soft PDMS mold onto a bulk chalcogenide glass over a large surface area. A periodic array of sub-micrometer lines (diffraction grating) with period 625 nm, amplitude 45 nm and surface roughness 3 nm was imprinted onto the surface of the chalcogenide AsSe(2) bulk glass at temperature 225°C, i.e. 5°C below the softening point of the glass. Sub-micrometer soft lithography into chalcogenide bulk glasses shows good reliability, reproducibility and promise for feasible fabrication of various dispersive optical elements, anti-reflection surfaces, 2D photonic structures and nano-structured surfaces for enhanced photonic properties and chemical sensing.

[1]  S. Chou,et al.  Nanoimprint Lithography , 2010 .

[2]  H. Schift Nanoimprint lithography: An old story in modern times? A review , 2008 .

[3]  Steve Madden,et al.  Low loss chalcogenide glass waveguides fabricated by thermal nanoimprint lithography , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[4]  T. Wágner,et al.  Selective wet-etching and characterization of chalcogenide thin films in inorganic alkaline solutions , 2007 .

[5]  D. Moss,et al.  Ultrafast all-optical chalcogenide glass photonic circuits , 2007, 2007 Conference on Lasers and Electro-Optics - Pacific Rim.

[6]  G. Whitesides,et al.  Soft lithography for micro- and nanoscale patterning , 2010, Nature Protocols.

[7]  Tomas Kohoutek,et al.  Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films. , 2009, Optics letters.

[8]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[9]  Steve Madden,et al.  Improved method for hot embossing As2S3 waveguides employing a thermally stable chalcogenide coating. , 2011, Optics express.

[10]  J. Fatome,et al.  Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers , 2009, Journal of Lightwave Technology.

[11]  J. E. Elshof,et al.  Micrometer and nanometer-scale parallel patterning of ceramic and organic-inorganic hybrid materials , 2010 .

[12]  Brandon Shaw,et al.  Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces. , 2010, Optics express.

[13]  Steve Madden,et al.  Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography. , 2010, Optics express.

[14]  M. Wegener,et al.  Direct laser writing of three-dimensional photonic-crystal templates for telecommunications , 2004, Nature materials.

[15]  Peter Ewen,et al.  Fabrication of photonic band gap structures in As40S60 by focused ion beam milling , 2000 .

[16]  G. J. Parker,et al.  Fabrication of photonic crystals in rare-earth doped chalcogenide glass films for enhanced upconversion , 2012, Photonics West - Optoelectronic Materials and Devices.

[17]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[18]  J. Nishii,et al.  Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass. , 2011, Optics letters.

[19]  Steve Madden,et al.  Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3) chalcogenide planar waveguide. , 2008, Optics express.

[20]  J. Homola,et al.  Spectroscopy of Bragg-scattered surface plasmons for characterization of thin biomolecular films. , 2007, Optics letters.

[21]  Behrad Gholipour,et al.  Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. , 2012, Nature materials.

[22]  M. Hughes,et al.  Direct laser writing of relief diffraction gratings into a bulk chalcogenide glass , 2012 .

[23]  Abdolnasser Zakery,et al.  Optical properties and applications of chalcogenide glasses: a review , 2003 .

[24]  Trevor M. Benson,et al.  Fine embossing of chalcogenide glasses: First time submicron definition of surface embossed features , 2007 .

[25]  Kimmo Paivasaari,et al.  Imprinting the nanostructures on the high refractive index semiconductor glass , 2011 .

[26]  陸夫 大田,et al.  As-Se, As-Se-S, As-Se-TeおよびAs-Se-Tl系ガラスの粘度 , 1970 .

[27]  R. Maeda,et al.  Micro Hot Embossing for Replication of Microstructures , 2002, 2002 International Microprocesses and Nanotechnology Conference, 2002. Digest of Papers..

[28]  Candice Tsay,et al.  Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides. , 2010, Optics express.

[29]  Bruno Bureau,et al.  Te-rich Ge–Te–Se glass for the CO2 infrared detection at 15 μm , 2009 .

[30]  C. Rowlands,et al.  Nanostructures fabricated in chalcogenide glass for use as surface-enhanced Raman scattering substrates. , 2009, Optics letters.

[31]  Hiroshi Fudouzi,et al.  Soft imprint lithography of a bulk chalcogenide glass , 2011 .