Optimizing asphalt mix design process using artificial neural network and genetic algorithm

Doha Technical Laboratories (DTL) and the National Research Foundation (NRF) in South Africa.

[1]  Sanford E. Thompson,et al.  THE LAWS OF PROPORTIONING CONCRETE , 1907 .

[2]  Halil Ceylan,et al.  Development of Asphalt Dynamic Modulus Master Curve Using Falling Weight Deflectometer Measurements, TR-659 , 2014 .

[3]  Sudhir Varma,et al.  Development of predictive models for low-temperature indirect tensile strength of asphalt mixtures , 2016 .

[4]  P. Toint,et al.  A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds , 1991 .

[5]  Teresa M Adams,et al.  Pavement Roughness Modeling Using Back‐Propagation Neural Networks , 2004 .

[6]  N W Mcleod,et al.  PARTICLE INDEX EVALUATION OF AGGREGATES FOR ASPHALT PAVING MIXTURES (WITH DISCUSSION) , 1981 .

[7]  Byron E Ruth,et al.  Development of Tentative Guidelines for the Selection of Aggregate Gra¬dations in Hot-Mix Asphalt , 2002 .

[8]  G. Bosurgi,et al.  A model based on artificial neural networks and genetic algorithms for pavement maintenance management , 2005 .

[9]  Raymond K Moore,et al.  Roughness Level Probability Prediction Using Artificial Neural Networks , 1997 .

[10]  Linbing Wang,et al.  Computer-aided procedure for determination of asphalt content in asphalt mixture using discrete element method , 2017 .

[11]  Bernd Faust,et al.  Hot Mix Asphalt Materials Mixture Design And Construction , 2016 .

[12]  Karim Chatti,et al.  Enhanced Analysis of Falling Weight Deflectometer Data for Use With Mechanistic-Empirical Flexible Pavement Design and Analysis and Recommendations for Improvements to Falling Weight Deflectometers , 2017 .

[13]  Karim Chatti,et al.  Data requirements from falling weight deflectometer tests for accurate backcalculation of dynamic modulus master curve of asphalt pavements , 2013 .

[14]  Nicholas I. M. Gould,et al.  A globally convergent Lagrangian barrier algorithm for optimization with general inequality constraints and simple bounds , 1997, Math. Comput..

[15]  Jidong Yang,et al.  Forecasting Overall Pavement Condition with Neural Networks: Application on Florida Highway Network , 2003 .

[16]  Shihui Shen,et al.  Analysis of Aggregate Gradation and Packing for Easy Estimation of Hot-Mix-Asphalt Voids in Mineral Aggregate , 2011 .

[17]  Sudhir Varma,et al.  Backcalculation of viscoelastic and nonlinear flexible pavement layer properties from falling weight deflections , 2016 .

[18]  Kalyanmoy Deb,et al.  Optimization for Engineering Design: Algorithms and Examples , 2004 .

[19]  B. Birgisson,et al.  Development of Mix Design Guidelines for Improved Performance of Asphalt Mixtures , 2006 .

[20]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[21]  M. Emin Kutay,et al.  An artificial neural network model for virtual Superpave asphalt mixture design , 2014 .

[22]  Sesh Commuri,et al.  Neural Network–Based Intelligent Compaction Analyzer for Estimating Compaction Quality of Hot Asphalt Mixes , 2011 .

[23]  Athanasios P. Chassiakos,et al.  Optimization Model for Pavement Maintenance Planning and Resource Allocation , 2012 .

[24]  S. Ranji Ranjithan,et al.  Application of Artificial Neural Networks for Estimating Dynamic Modulus of Asphalt Concrete , 2009 .

[25]  Robert L. Lytton,et al.  Models for Predicting Reflection Cracking of Hot-Mix Asphalt Overlays , 2010 .

[26]  Hao Wang,et al.  Development of ANN-GA program for backcalculation of pavement moduli under FWD testing with viscoelastic and nonlinear parameters , 2019 .