Ultrafast Bragg switching induced by a phase transition in a 3D photonic crystal

We demonstrate ultrafast shifting of a photonic stop band driven by a photoinduced phase transition in vanadium dioxide (VO2) forming a three-dimensional photonic crystal. An ultrashort 120-fs laser pulse induces a phase transition in VO2 filling the pores of an artificial silica opal, thus changing the effective dielectric constant of the opal. Consequently, the spectral position of the photonic stop band blue-shifts producing large changes in the reflectivity. The observed switching of the photonic crystal is faster that 350 fs. The demonstrated properties of opal-VO2 composite are relevant for potential applications in all-optical switches, optical memories, low-threshold lasers, and optical computers.

[1]  Vladimir P. Bykov Spontaneous Emission in a Periodic Structure , 1972 .

[2]  Younan Xia,et al.  Photonic Crystals That Can Be Addressed with an External Magnetic Field , 2001 .

[3]  Kurt Busch,et al.  PHOTONIC BAND GAP FORMATION IN CERTAIN SELF-ORGANIZING SYSTEMS , 1998 .

[4]  S. L. Ng,et al.  Thermally tuning of the photonic band gap of SiO2 colloid-crystal infilled with ferroelectric BaTiO3 , 2001 .

[5]  D. Davidov,et al.  Tunable photonic band gap in self-assembled clusters of floating magnetic particles , 2002 .

[6]  Hye Jin Lim,et al.  Tunable three-dimensional photonic crystals using semiconductors with varying free-carrier densities , 2002 .

[7]  Klaus Huber,et al.  Shift of the photonic band gap in two photonic crystal/liquid crystal composites , 2002 .

[8]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[9]  Masanori Ozaki,et al.  Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal , 1999 .

[10]  F. J. Morin,et al.  Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature , 1959 .

[11]  Q. Wang,et al.  Ultrafast carrier dynamics in nanocrystalline silicon , 2001 .

[12]  Masanori Ozaki,et al.  Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal , 2001 .

[13]  Hysteresis of the photonic band gap in VO2 photonic crystal in the semiconductor-metal phase transition , 2002 .

[14]  S. Asher,et al.  OPTICALLY NONLINEAR BRAGG DIFFRACTING NANOSECOND OPTICAL SWITCHES , 1997 .

[15]  Daozhong Zhang,et al.  Ultrafast three-dimensional tunable photonic crystal , 2003 .

[16]  Younan Xia,et al.  Monodispersed Colloidal Spheres: Old Materials with New Applications , 2000 .

[17]  D. A. Kurdyukov,et al.  Ultrafast optical switching in three-dimensional photonic crystals. , 2003, Physical review letters.

[18]  R. Baughman,et al.  Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment. , 2001, Physical review letters.

[19]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[20]  Ji Zhou,et al.  Ferroelectric inverse opals with electrically tunable photonic band gap , 2003 .

[21]  A. Cavalleri,et al.  Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition. , 2001, Physical review letters.

[22]  Osamu Sato,et al.  Effects of external electric field upon the photonic band structure in synthetic opal infiltrated with liquid crystal , 2001 .

[23]  Bowden,et al.  Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials. , 1994, Physical review letters.

[24]  V. G. Golubev,et al.  Phase transition-governed opal–VO2 photonic crystal , 2001 .

[25]  W. Vos,et al.  Ultrafast switching of photonic density of states in photonic crystals , 2002 .

[26]  Mansoor Sheik-Bahae,et al.  Dispersion of bound electron nonlinear refraction in solids , 1991 .

[27]  Haim Grebel,et al.  Linear and nonlinear optical properties of single-walled carbon nanotubes within an ordered array of nanosized silica spheres , 2003 .

[28]  D. Weitz,et al.  Electro-optic response and switchable Bragg diffraction for liquid crystals in colloid-templated materials. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  J. Sturm,et al.  On-chip natural assembly of silicon photonic bandgap crystals , 2001, Nature.

[30]  Kurt Busch,et al.  Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum , 1999 .

[31]  Patrick Georges,et al.  Femtosecond laser excitation dynamics of the semiconductor-metal phase transition in VO2 , 1996 .

[32]  Laser-pulse-induced Bragg diffraction spectrum rearrangement in opal-VO2 composites , 2003 .

[33]  C. N. Berglund,et al.  Optical Properties of VO2between 0.25 and 5 eV , 1968 .

[34]  G. Ozin,et al.  Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres , 2000, Nature.