Coherent-trapped helical mode in parity-time symmetric metamaterials.

Coaxial optical subwavelength elements support helical modes Lm with different topological indexes m. Here we propose to couple the two bright L±1 modes with the dark one L0 via a parity-time (PT) symmetric perturbation. We show that the cascading coupled configuration is similar to a three-level atomic system, and supports a special hybridized mode Lc via a classic analog of coherent-population-trapping effect. Resonant frequency of Lc is independent of the PT-symmetric perturbation. Populations in L±1 can be manipulated by tuning the PT-symmetric perturbation, and no population is trapped in L0. Since the L±1 modes are associated with optical waves of opposite circular polarizations, the polarization of transmitted wave is independent of the polarization of incidence but solely determined by the PT-symmetric perturbation. Such an effect can be utilized to manipulate the polarization state of light. Numerical simulation in a well-designed coaxial metamaterial verifies our analysis.

[1]  K. Malloy,et al.  Enhanced infrared transmission through subwavelength coaxial metallic arrays. , 2005, Physical review letters.

[2]  Y. Wang,et al.  Single-mode laser by parity-time symmetry breaking , 2014, Science.

[3]  Shanhui Fan,et al.  Parity–time-symmetric whispering-gallery microcavities , 2013, Nature Physics.

[4]  Lorenzo Marrucci,et al.  Spin–orbit photonics , 2015, Nature Photonics.

[5]  G. Strasser,et al.  Reversing the pump dependence of a laser at an exceptional point , 2014, Nature Communications.

[6]  F. García-Vidal,et al.  Transmission Resonances on Metallic Gratings with Very Narrow Slits , 1999, cond-mat/9904365.

[7]  D. Christodoulides,et al.  Parity-time–symmetric microring lasers , 2014, Science.

[8]  Jacob B. Khurgin,et al.  Slow light in various media: a tutorial , 2010 .

[9]  Hong Wei,et al.  Chiral surface plasmon polaritons on metallic nanowires. , 2011, Physical review letters.

[10]  Vilson R. Almeida,et al.  Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. , 2013, Nature materials.

[11]  Shachar Klaiman,et al.  Visualization of branch points in PT-symmetric waveguides. , 2008, Physical review letters.

[12]  B. He,et al.  Quantum noise effects with Kerr-nonlinearity enhancement in coupled gain-loss waveguides , 2014, 1408.0565.

[13]  X. Zou,et al.  Chiral symmetry breaking in a microring optical cavity by engineered dissipation , 2016, 1604.08678.

[14]  Hong-Gyu Park,et al.  Direct observation of exceptional points in coupled photonic-crystal lasers with asymmetric optical gains , 2016, Nature Communications.

[15]  Ali K. Jahromi,et al.  Transparent Perfect Mirror , 2017, 1706.02218.

[16]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[17]  T. Fernandez,et al.  Adiabatic light transfer via dressed states in optical waveguide arrays , 2008 .

[18]  A. Szameit,et al.  Light transport in PT-invariant photonic structures with hidden symmetries , 2014, 1408.1561.

[19]  R. Morandotti,et al.  Observation of PT-symmetry breaking in complex optical potentials. , 2009, Physical review letters.

[20]  Qing Ye,et al.  Orthogonal polarization mode coupling for pure twisted polarization maintaining fiber Bragg gratings. , 2012, Optics express.

[21]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[22]  F. G. D. Abajo Colloquium: Light scattering by particle and hole arrays , 2007, 0903.1671.

[23]  U. Peschel,et al.  Parity–time synthetic photonic lattices , 2012, Nature.

[24]  J. Chen,et al.  Study on photonic angular momentum states in coaxial magneto-optical waveguides , 2014 .

[25]  A. Mizrahi,et al.  Thresholdless nanoscale coaxial lasers , 2011, Nature.

[26]  Ali K. Jahromi,et al.  Observation of Poynting’s vector reversal in an active photonic cavity , 2016 .

[27]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[28]  S. Longhi Quantum‐optical analogies using photonic structures , 2009 .

[29]  N. Zheludev,et al.  From metamaterials to metadevices. , 2012, Nature materials.

[30]  M. J. Lockyear,et al.  Microwave transmission through a single subwavelength annular aperture in a metal plate. , 2005, Physical review letters.

[31]  J. Chen,et al.  Slow light from sharp dispersion by exciting dark photonic angular momentum states. , 2013, Optics letters.

[32]  Matthias Heinrich,et al.  Single mode lasing in transversely multi-moded PT-symmetric microring resonators , 2016 .

[33]  Shanhui Fan,et al.  Superscattering of light from subwavelength nanostructures. , 2010, Physical review letters.

[34]  Yidong Chong,et al.  Time-Reversed Lasing and Interferometric Control of Absorption , 2011, Science.

[35]  J. Chen,et al.  Circular polarizer via selective excitation of photonic angular momentum states in metamaterials , 2013 .

[36]  Stefano Longhi,et al.  PT-symmetric laser absorber , 2010, 1008.5298.

[37]  Fadi Issam Baida,et al.  Enhanced transmission through subwavelength metallic coaxial apertures by excitation of the TEM mode , 2007 .

[38]  Yongmin Liu,et al.  Line Degeneracy and Strong Spin-Orbit Coupling of Light with Bulk Bianisotropic Metamaterials. , 2015, Physical review letters.

[39]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[40]  Z. Musslimani,et al.  Beam dynamics in PT symmetric optical lattices. , 2008, Physical review letters.

[41]  Xiang Zhang,et al.  Metamaterials: a new frontier of science and technology. , 2011, Chemical Society reviews.

[42]  F. Baida,et al.  Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes , 2006 .

[43]  N. Fang,et al.  Zeeman splitting of photonic angular momentum states in a gyromagnetic cylinder , 2011, 1108.0215.

[44]  Shiyue Hua,et al.  Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators , 2014, Nature Photonics.

[45]  H. Yilmaz,et al.  Loss-induced suppression and revival of lasing , 2014, Science.

[46]  F. J. Rodríguez-Fortuño,et al.  Spin–orbit interactions of light , 2015, Nature Photonics.