Methods for the Transformation of ω-Automata : Complexity and Connection to Second Order Logic
暂无分享,去创建一个
[1] Moshe Y. Vardi,et al. On ω-automata and temporal logic , 1989, STOC '89.
[2] S. Sieber. On a decision method in restricted second-order arithmetic , 1960 .
[3] Shmuel Safra,et al. Exponential determinization for ω-automata with strong-fairness acceptance condition (extended abstract) , 1992, STOC '92.
[4] Jeffrey D. Ullman,et al. Introduction to Automata Theory, Languages and Computation , 1979 .
[5] Wolfgang Thomas,et al. Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[6] Igor Walukiewicz,et al. How much memory is needed to win infinite games? , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.
[7] Orna Kupferman,et al. Weak alternating automata and tree automata emptiness , 1998, STOC '98.
[8] B. A. Trakhtenbrot,et al. Finite Automata and the Logic of Single-Place Predicates , 1962 .
[9] Andrzej Wlodzimierz Mostowski,et al. Regular expressions for infinite trees and a standard form of automata , 1984, Symposium on Computation Theory.
[10] David E. Muller,et al. Alternating Automata on Infinite Trees , 1987, Theor. Comput. Sci..
[11] M. Rabin. Decidability of second-order theories and automata on infinite trees , 1968 .
[12] Robert S. Streett,et al. Propositional Dynamic Logic of Looping and Converse Is Elementarily Decidable , 1982, Inf. Control..
[13] Ludwig Staiger,et al. Automatentheoretische und automatenfreie Charakterisierungen topologischer Klassen regulärer Folgenmengen , 1974, J. Inf. Process. Cybern..
[14] David E. Muller,et al. Alternating Automata. The Weak Monadic Theory of the Tree, and its Complexity , 1986, ICALP.
[15] David E. Muller,et al. Infinite sequences and finite machines , 1963, SWCT.
[16] Robert McNaughton,et al. Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..