Methods for the Transformation of ω-Automata : Complexity and Connection to Second Order Logic

[1]  Moshe Y. Vardi,et al.  On ω-automata and temporal logic , 1989, STOC '89.

[2]  S. Sieber On a decision method in restricted second-order arithmetic , 1960 .

[3]  Shmuel Safra,et al.  Exponential determinization for ω-automata with strong-fairness acceptance condition (extended abstract) , 1992, STOC '92.

[4]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[5]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[6]  Igor Walukiewicz,et al.  How much memory is needed to win infinite games? , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[7]  Orna Kupferman,et al.  Weak alternating automata and tree automata emptiness , 1998, STOC '98.

[8]  B. A. Trakhtenbrot,et al.  Finite Automata and the Logic of Single-Place Predicates , 1962 .

[9]  Andrzej Wlodzimierz Mostowski,et al.  Regular expressions for infinite trees and a standard form of automata , 1984, Symposium on Computation Theory.

[10]  David E. Muller,et al.  Alternating Automata on Infinite Trees , 1987, Theor. Comput. Sci..

[11]  M. Rabin Decidability of second-order theories and automata on infinite trees , 1968 .

[12]  Robert S. Streett,et al.  Propositional Dynamic Logic of Looping and Converse Is Elementarily Decidable , 1982, Inf. Control..

[13]  Ludwig Staiger,et al.  Automatentheoretische und automatenfreie Charakterisierungen topologischer Klassen regulärer Folgenmengen , 1974, J. Inf. Process. Cybern..

[14]  David E. Muller,et al.  Alternating Automata. The Weak Monadic Theory of the Tree, and its Complexity , 1986, ICALP.

[15]  David E. Muller,et al.  Infinite sequences and finite machines , 1963, SWCT.

[16]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..