Dynamic Display of BRDFs

This paper deals with the challenge of physically displaying reflectance, i.e., the appearance of a surface and its variation with the observer position and the illuminating environment. This is commonly described by the bidirectional reflectance distribution function (BRDF). We provide a catalogue of criteria for the display of BRDFs, and sketch a few orthogonal approaches to solving the problem in an optically passive way. Our specific implementation is based on a liquid surface, on which we excite waves in order to achieve a varying degree of anisotropic roughness. The resulting probability density function of the surface normal is shown to follow a Gaussian distribution similar to most established BRDF models.

[1]  K. Torrance,et al.  Theory for off-specular reflection from roughened surfaces , 1967 .

[2]  Kengo Hayasaka,et al.  360-degree autostereoscopic display , 2010, SIGGRAPH '10.

[3]  Takeshi Naemura,et al.  BRDF display: interactive view dependent texture display using integral photography , 2008, IPT/EDT '08.

[4]  Greg Welch,et al.  Shader Lamps: Animating Real Objects With Image-Based Illumination , 2001, Rendering Techniques.

[5]  Jan Kautz,et al.  Acquisition and analysis of bispectral bidirectional reflectance and reradiation distribution functions , 2009 .

[6]  Wojciech Matusik,et al.  Printing spatially-varying reflectance , 2009, ACM Trans. Graph..

[7]  A Yariv,et al.  Optical data storage using orthogonal wavelength multiplexed volume holograms. , 1992, Optics letters.

[8]  Hans-Peter Seidel,et al.  Towards passive 6D reflectance field displays , 2008, ACM Trans. Graph..

[9]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[10]  Wojciech Matusik,et al.  Physical reproduction of materials with specified subsurface scattering , 2010, ACM Trans. Graph..

[11]  Gregory J. Ward,et al.  Measuring and modeling anisotropic reflection , 1992, SIGGRAPH.

[12]  Byoungho Lee,et al.  Recent researches based on integral imaging display method , 2010 .

[13]  Sergei Orlov,et al.  Volume holographic data storage , 2000, CACM.

[14]  Douglas Lanman,et al.  Build your own 3D display , 2010, SIGGRAPH '10.

[15]  Baining Guo,et al.  Fabricating spatially-varying subsurface scattering , 2010, ACM Trans. Graph..

[16]  Shree K. Nayar,et al.  Light field transfer: global illumination between real and synthetic objects , 2008, ACM Trans. Graph..

[17]  Hideshi Yamada,et al.  An interactive 360° light field display , 2007, SIGGRAPH '07.

[18]  Douglas Lanman,et al.  BiDi screen: a thin, depth-sensing LCD for 3D interaction using light fields , 2009, SIGGRAPH 2009.

[19]  F. Mok,et al.  Angle-multiplexed storage of 5000 holograms in lithium niobate. , 1993, Optics letters.

[20]  Frédo Durand,et al.  Experimental analysis of BRDF models , 2005, EGSR '05.

[21]  Paul Debevec Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography , 2008, SIGGRAPH Classes.

[22]  Tim Weyrich,et al.  Fabricating microgeometry for custom surface reflectance , 2009, ACM Trans. Graph..

[23]  Hans-Peter Seidel,et al.  Acquisition and analysis of bispectral bidirectional reflectance and reradiation distribution functions , 2010, SIGGRAPH 2010.

[24]  M. Alexa,et al.  Reliefs as images , 2010, ACM Trans. Graph..

[25]  M. Otaduy,et al.  Design and fabrication of materials with desired deformation behavior , 2010, ACM Trans. Graph..

[26]  Wojciech Matusik,et al.  A data-driven reflectance model , 2003, ACM Trans. Graph..

[27]  Ali Esmaili,et al.  Probability and Random Processes , 2005, Technometrics.

[28]  James F. Blinn,et al.  Models of light reflection for computer synthesized pictures , 1977, SIGGRAPH.

[29]  Hans-Peter Seidel,et al.  Acquisition and analysis of bispectral bidirectional reflectance and reradiation distribution functions , 2010, ACM Trans. Graph..