High photocurrent in silicon photoanodes catalyzed by iron oxide thin films for water oxidation.

Silicon splits: The application of silicon to water oxidation is limited due to unfavorable interface properties. However, these can be circumvented by using a high-performance silicon photoanode with a catalytically active iron oxide thin film (see picture). This approach results in photocurrents as high as 17 mA cm(-2) under 1 sun and zero overpotential conditions.

[1]  Daniel G. Nocera,et al.  In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+ , 2008, Science.

[2]  Joop Schoonman,et al.  Solar hydrogen production with nanostructured metal oxides , 2008 .

[3]  Lide Zhang,et al.  The thermal stability of nanocrystalline maghemite , 1998 .

[4]  K. Kim,et al.  Formation of a highly oriented FeO thin film by phase transition of Fe3O4 and Fe nanocrystallines , 2000 .

[5]  A. Akl Optical properties of crystalline and non-crystalline iron oxide thin films deposited by spray pyrolysis , 2004 .

[6]  J. Fierro,et al.  Water splitting on semiconductor catalysts under visible-light irradiation. , 2009, ChemSusChem.

[7]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[8]  Piers R. F. Barnes,et al.  Enhancement of Photoelectrochemical Hydrogen Production from Hematite Thin Films by the Introduction of Ti and Si , 2007 .

[9]  Nathan S. Lewis,et al.  Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array Photocathodes , 2010, Science.

[10]  Robin Brimblecombe,et al.  Molecular water-oxidation catalysts for photoelectrochemical cells. , 2009, Dalton transactions.

[11]  E. McFarland,et al.  Improved photoelectrochemical performance of Ti-doped alpha-Fe2O3 thin films by surface modification with fluoride. , 2009, Chemical communications.

[12]  Shahed U. M. Khan,et al.  PHOTOELECTROCHEMICAL SPLITTING OF WATER AT NANOCRYSTALLINE N-FE2O3 THIN-FILM ELECTRODES , 1999 .

[13]  Eric L. Miller,et al.  High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes , 1998 .

[14]  Michael Grätzel,et al.  Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. , 2010, Angewandte Chemie.

[15]  Michael Grätzel,et al.  Influence of plasmonic Au nanoparticles on the photoactivity of Fe₂O₃ electrodes for water splitting. , 2011, Nano letters.

[16]  Takashi Nakamura,et al.  XPS and AES studies on iron‐oxide‐coated Si photoanodes with a negative flatband potential , 1983 .

[17]  Zhichuan J. Xu,et al.  Controlled synthesis and chemical conversions of FeO nanoparticles. , 2007, Angewandte Chemie.

[18]  S. S. Eskildsen,et al.  Structural analysis of iron oxide coated n-silicon heterojunction photoanodes , 1984 .

[19]  M. Madou,et al.  Bulk and Surface Characterization of the Silicon Electrode , 1981 .

[20]  Malcolm Eames,et al.  Towards a sustainable hydrogen economy: A multi-criteria sustainability appraisal of competing hydrogen futures , 2007 .

[21]  Yun Jeong Hwang,et al.  High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. , 2009, Nano letters.

[22]  M. Grätzel,et al.  Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting. , 2010, Nano letters.

[23]  Stuart Licht,et al.  Efficient Solar Water Splitting, Exemplified by RuO2-Catalyzed AlGaAs/Si Photoelectrolysis , 2000 .

[24]  M. J. Keyser,et al.  Syngas production from South African coal sources using Sasol–Lurgi gasifiers , 2006 .

[25]  R. Černý,et al.  Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. , 2005, The journal of physical chemistry. B.

[26]  M. Merrill,et al.  Metal Oxide Catalysts for the Evolution of O2 from H2O , 2008 .

[27]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .