A positivity-preserving, energy stable scheme for a Ternary Cahn-Hilliard system with the singular interfacial parameters

Article history: Available online 1 June 2021

[1]  Jie Shen,et al.  Efficient energy stable schemes for isotropic and strongly anisotropic Cahn-Hilliard systems with the Willmore regularization , 2018, J. Comput. Phys..

[2]  Chun Liu,et al.  A structure-preserving, operator splitting scheme for reaction-diffusion equations with detailed balance , 2021, J. Comput. Phys..

[3]  Franck Boyer,et al.  Study of a three component Cahn-Hilliard flow model , 2006 .

[4]  Jie Shen,et al.  Convergence and Error Analysis for the Scalar Auxiliary Variable (SAV) Schemes to Gradient Flows , 2018, SIAM J. Numer. Anal..

[5]  Steven M. Wise,et al.  A positivity-preserving, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck system , 2020, Math. Comput..

[6]  Wenqiang Feng,et al.  An energy stable fourth order finite difference scheme for the Cahn-Hilliard equation , 2017, J. Comput. Appl. Math..

[7]  Xiao,et al.  A SECOND-ORDER CONVEX SPLITTING SCHEME FOR A CAHN-HILLIARD EQUATION WITH VARIABLE INTERFACIAL PARAMETERS , 2017 .

[8]  Kris T. Delaney,et al.  Self-consistent field theory simulations of polymers on arbitrary domains , 2016, J. Comput. Phys..

[9]  Cheng Wang,et al.  A Second-Order Energy Stable BDF Numerical Scheme for the Cahn-Hilliard Equation , 2018 .

[10]  Amanda E. Diegel,et al.  Stability and Convergence of a Second Order Mixed Finite Element Method for the Cahn-Hilliard Equation , 2014, 1411.5248.

[11]  Steven M. Wise,et al.  Energy Stable Numerical Schemes for Ternary Cahn-Hilliard System , 2020, Journal of Scientific Computing.

[12]  Wenqiang Feng,et al.  Convergence analysis and numerical implementation of a second order numerical scheme for the three-dimensional phase field crystal equation , 2016, Comput. Math. Appl..

[13]  Wenqiang Feng,et al.  A mass-conservative adaptive FAS multigrid solver for cell-centered finite difference methods on block-structured, locally-cartesian grids , 2018, J. Comput. Phys..

[14]  Cheng Wang,et al.  A second‐order energy stable backward differentiation formula method for the epitaxial thin film equation with slope selection , 2017, 1706.01943.

[15]  Cheng Wang,et al.  A Second-Order, Weakly Energy-Stable Pseudo-spectral Scheme for the Cahn–Hilliard Equation and Its Solution by the Homogeneous Linear Iteration Method , 2016, J. Sci. Comput..

[16]  Steven M. Wise,et al.  An Energy Stable Finite Element Scheme for the Three-Component Cahn–Hilliard-Type Model for Macromolecular Microsphere Composite Hydrogels , 2021, Journal of Scientific Computing.

[17]  Jiang Yang,et al.  The scalar auxiliary variable (SAV) approach for gradient flows , 2018, J. Comput. Phys..

[18]  Steven M. Wise,et al.  An Energy Stable and Convergent Finite-Difference Scheme for the Modified Phase Field Crystal Equation , 2011, SIAM J. Numer. Anal..

[19]  Xiaofeng Yang,et al.  Numerical approximations for a three-component Cahn–Hilliard phase-field model based on the invariant energy quadratization method , 2017 .

[20]  Hui Zhang,et al.  A positivity-preserving, energy stable and convergent numerical scheme for the Cahn–Hilliard equation with a Flory–Huggins–Degennes energy , 2019, Communications in Mathematical Sciences.

[21]  S. M. Wise,et al.  Unconditionally Stable Finite Difference, Nonlinear Multigrid Simulation of the Cahn-Hilliard-Hele-Shaw System of Equations , 2010, J. Sci. Comput..

[22]  Franck Boyer,et al.  Numerical schemes for a three component Cahn-Hilliard model , 2011 .

[23]  Cheng Wang,et al.  Error analysis of a mixed finite element method for a Cahn–Hilliard–Hele–Shaw system , 2017, Numerische Mathematik.

[24]  Kris T. Delaney,et al.  Functional level-set derivative for a polymer self consistent field theory Hamiltonian , 2017, J. Comput. Phys..

[25]  Cheng Wang,et al.  A second order energy stable scheme for the Cahn-Hilliard-Hele-Shaw equations , 2016, Discrete & Continuous Dynamical Systems - B.

[26]  Steven M. Wise,et al.  Structure-preserving, energy stable numerical schemes for a liquid thin film coarsening model , 2020, SIAM J. Sci. Comput..

[27]  Cheng Wang,et al.  An $H^2$ convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn–Hilliard equation , 2016 .

[28]  Xiaoming Wang,et al.  A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation , 2014, J. Comput. Phys..

[29]  Zhonghua Qiao,et al.  An unconditionally energy stable finite difference scheme for a stochastic Cahn-Hilliard equation , 2015 .

[30]  WangCheng,et al.  A Second-Order, Weakly Energy-Stable Pseudo-spectral Scheme for the Cahn---Hilliard Equation and Its Solution by the Homogeneous Linear Iteration Method , 2016 .

[31]  Cheng Wang,et al.  An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation , 2009, SIAM J. Numer. Anal..

[32]  Dong Li,et al.  On Second Order Semi-implicit Fourier Spectral Methods for 2D Cahn–Hilliard Equations , 2017, J. Sci. Comput..

[33]  Hui Zhang,et al.  Investigation on the application of the TDGL equation in macromolecular microsphere composite hydrogel , 2013 .

[34]  Kris T. Delaney,et al.  Level-set strategy for inverse DSA-lithography , 2018, J. Comput. Phys..

[35]  Francisco Guillén-González,et al.  Second order schemes and time-step adaptivity for Allen-Cahn and Cahn-Hilliard models , 2014, Comput. Math. Appl..

[36]  Cheng Wang,et al.  Convergence analysis and error estimates for a second order accurate finite element method for the Cahn–Hilliard–Navier–Stokes system , 2016, Numerische Mathematik.

[37]  Xiao Li,et al.  Phase transitions of macromolecular microsphere composite hydrogels based on the stochastic Cahn-Hilliard equation , 2015, J. Comput. Phys..

[38]  Cheng Wang,et al.  Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential , 2017, J. Comput. Phys. X.

[39]  Zhonghua Qiao,et al.  Characterizing the Stabilization Size for Semi-Implicit Fourier-Spectral Method to Phase Field Equations , 2014, SIAM J. Numer. Anal..

[40]  Cheng Wang,et al.  A Positive and Energy Stable Numerical Scheme for the Poisson-Nernst-Planck-Cahn-Hilliard Equations with Steric Interactions , 2020, J. Comput. Phys..

[41]  Cheng Wang,et al.  Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation , 2009, J. Comput. Phys..

[42]  Cheng Wang,et al.  Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation , 2012, J. Comput. Phys..