Study of mechanical and dielectric spectrum in YFe1-xMnxO3 ceramics

The mechanical spectra of Mn-substituted yttrium orthoferrite YFe1-xMnxO3 (x = 0, 0.2, 0.3, 0.4) ceramics were performed at kilohertz from 100 to 360 K. Two internal friction (IF) peaks are observed around 150 K and 230 K, respectively, and both the IF peaks exhibit frequency dispersion behavior. The IF peak around 150 K is associated with a step increase in the modulus and its mechanical relaxation rate follows the Vogel-Fulcher relation with τ0 = 4.45 × 10−11s, Eα = 0.03 eV, and TVF = 155 K. This IF peak can be explained in terms of a freezing of oxygen vacancies after excluding the possible magnetic spin glass transition. Another IF peak around 230 K presents a relaxation behavior and it follows Arrhenius law. Furthermore, the relaxation behavior was verified by the dielectric spectrum and it can be ascribed to the charge carrier hopping between Fe2+ and Fe3+.

[1]  V. Caignaert,et al.  Spin reorientation and magnetization reversal in the perovskite oxides, YFe{sub 1-x}Mn{sub x}O{sub 3} (0{<=}x{<=}0.45): A neutron diffraction study , 2013 .

[2]  X. Ying,et al.  Phase transitions in La0.5Sr0.5FeO3−δ investigated by mechanical spectrum , 2012 .

[3]  C. Zhang,et al.  Study on dielectric and magnetic properties of Ho3Fe5O12 ceramics , 2012 .

[4]  C. Zhang,et al.  The effect of Fe2+ ions on dielectric and magnetic properties of Yb3Fe5O12 ceramics , 2012 .

[5]  C. Rao,et al.  Spin-reorientation, ferroelectricity, and magnetodielectric effect in YFe(1-x)Mn(x)O3(0.1 ≤ x ≤ 0.40). , 2011, Physical review letters.

[6]  Yujie Yuan,et al.  The mechanical spectra of glycerol measured by a composite reed vibration method , 2011 .

[7]  R. F. Jardim,et al.  Anelastic spectroscopy study of the metal-insulator transition of Nd1−xEuxNiO3 , 2011, 1108.3192.

[8]  Xiaomei Lu,et al.  The effect of sintering temperature on magnetic and dielectric properties of Ho3Fe5O12 ceramics , 2011 .

[9]  Y. Tokura,et al.  Excess-electron induced polarization and magnetoelectric effect in yttrium iron garnet , 2010 .

[10]  Yan Ma,et al.  Microstructures and multiferroic properties of YFe1−xMnxO3 ceramics prepared by spark plasma sintering , 2010 .

[11]  Y. Tokura,et al.  Quantum magnetoelectric effect in iron garnet , 2009 .

[12]  K. Sreenivas,et al.  Dielectric studies of Co3-XMnxO4 (x=0.1-1.0) cubic spinel multiferroic , 2009 .

[13]  Zhonghua Xu,et al.  High temperature sodium ordering transition in NaxCoO2 studied by mechanical spectrum , 2009 .

[14]  X. Ying,et al.  A sodium ordering transition above room temperature in NaxCoO2 deduced by mechanical spectrum , 2008 .

[15]  Xuying Chen,et al.  Relaxorlike dielectric behavior and weak ferromagnetism in YFeO3 ceramics , 2008 .

[16]  Changfei Zhu,et al.  An ultrasonic study on complex charge ordering phenomena for La1−xSrxFeO3 , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  C. S. Chen,et al.  Internal friction study of the phase transition in GdBaCo2O5+δ bulk materials , 2007 .

[18]  Y. J. Wu,et al.  Dielectric relaxations of yttrium iron garnet ceramics over a broad temperature range , 2007 .

[19]  Xiaomei Lu,et al.  Effect of Nd dopant on magnetic and electric properties of BiFeO3 thin films prepared by metal organic deposition method , 2006 .

[20]  R. Harrison,et al.  Memory effect of a mechanical anomaly related to ferroelastic domain switching in rhombohedral lead zirconate titanate ceramics , 2006 .

[21]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[22]  G. Catalán Magnetocapacitance without magnetoelectric coupling , 2006 .

[23]  C. Zhu,et al.  Ultrasonic anomalies in La1∕3Sr2∕3MO3 (M=Fe, Mn) , 2006 .

[24]  Y. Sun,et al.  Internal friction evidence of uncorrelated magnetic clusters in electron-doped manganite Sr0.8Ce0.2MnO3 , 2005 .

[25]  Youichi Murakami,et al.  Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4 , 2005, Nature.

[26]  P. Lunkenheimer,et al.  Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4 , 2005, Nature.

[27]  Chan-soo Kim,et al.  Effect of substitution of manganese for iron on the structure and electrical properties of yttrium ferrite , 2004 .

[28]  S. Mathur,et al.  Molecule Derived Synthesis of Nanocrystalline YFeO3 and Investigations on Its Weak Ferromagnetic Behavior , 2004 .

[29]  Nicola A. Spaldin,et al.  The origin of ferroelectricity in magnetoelectric YMnO3 , 2004, Nature materials.

[30]  R. Zheng,et al.  Internal friction and Jahn–Teller effect in the charge-ordered La1−xCaxMnO3 (0.5⩽x⩽0.87) , 2002, cond-mat/0212013.

[31]  Y. Sun,et al.  Coupling between the ferroelectric and antiferromagnetic orders in YMnO 3 , 1997 .

[32]  Adams,et al.  Combined magnetic-dipole and electric-quadrupole hyperfine interactions in rare-earth orthoferrite ceramics. , 1993, Physical review. B, Condensed matter.

[33]  K. Fossheim,et al.  Evidence for Glasslike Dynamic Behaviour in YBa2Cu3O7-x (YBCO) Superconductor? , 1988 .

[34]  J. Krzywiński Influence of magnetoelastic interactions on domain wall motion in YFeO3 platelets , 1986 .

[35]  S. Shtrikman,et al.  Mössbauer Studies of Fe 57 in Orthoferrites , 1967 .

[36]  G. Fulcher,et al.  ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES , 1925 .

[37]  X. Ying,et al.  Mechanical spectrum and interstitial oxygen in YBaCuFeO5+δ , 2012 .

[38]  Vincenzo Buscaglia,et al.  Anelastic spectroscopy for studying O vacancies in perovskites , 2006 .

[39]  F. Figueiredo,et al.  Synthesis and electrical conductivity of Y1-xMn1-yO3-δ , 2001 .

[40]  M. Villegas,et al.  Non-Ohmic Behaviour and Switching Phenomena in YMnO3-Based Ceramic Materials , 1999 .