The modular small-angle X-ray scattering data correction sequence

A data correction sequence is presented, consisting of ordered elementary steps that extract the small-angle X-ray scattering cross section from the original detector signal(s). It is applicable to a wide range of samples, including solids and dispersions.

[1]  C. A. Dreiss,et al.  On the absolute calibration of bench-top small-angle X-ray scattering instruments: a comparison of different standard methods , 2006 .

[2]  Pavel Strunz,et al.  General formula for determination of cross-section from measured SANS intensities , 2000 .

[3]  B. Schmitt,et al.  Performance of single-photon-counting PILATUS detector modules , 2009, Journal of synchrotron radiation.

[4]  Olof Svensson,et al.  Data Analysis WorkbeNch (DAWN) , 2015, Journal of synchrotron radiation.

[5]  P. Coppens,et al.  On the correction of reflection intensities recorded on imaging plates for incomplete absorption in the phosphor layer. , 1998 .

[6]  A. W. Ashton,et al.  Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2 , 2017, Journal of applied crystallography.

[7]  P. V. Konarev,et al.  ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions , 2017, Journal of applied crystallography.

[8]  Martin J Hollamby,et al.  Practical applications of small-angle neutron scattering. , 2013, Physical chemistry chemical physics : PCCP.

[9]  Pete R. Jemian,et al.  Irena: tool suite for modeling and analysis of small‐angle scattering , 2009 .

[10]  Ingo Breßler,et al.  SASfit: a tool for small-angle scattering data analysis using a library of analytical expressions , 2015, Journal of applied crystallography.

[11]  Peter Lindner,et al.  Learning about SANS instruments and data reduction from round robin measurements on samples of polystyrene latex , 2013, 1307.8296.

[12]  Michael Krumrey,et al.  Characterization of an in-vacuum PILATUS 1M detector. , 2013, Journal of synchrotron radiation.

[13]  Erik Knudsen,et al.  FabIO: easy access to two-dimensional X-ray detector images in Python , 2013 .

[14]  John A. Tainer,et al.  Accurate assessment of mass, models and resolution by small-angle scattering , 2013, Nature.

[15]  A. Härtl,et al.  Characterization of Monodisperse Colloidal Particles: Comparison between SAXS and DLS , 2000 .

[16]  S. Hauschild,et al.  Simultaneous SAXS/WAXS/UV-Vis Study of the Nucleation and Growth of Nanoparticles: A Test of Classical Nucleation Theory. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[17]  Detlef Snakenborg,et al.  BioXTAS RAW, a software program for high‐throughput automated small‐angle X‐ray scattering data reduction and preliminary analysis , 2009 .

[18]  I. Bressler,et al.  McSAS: software for the retrieval of model parameter distributions from scattering patterns , 2015, Journal of applied crystallography.

[19]  M. Guizar‐Sicairos,et al.  Bone mineral crystal size and organization vary across mature rat bone cortex. , 2016, Journal of structural biology.

[20]  A. Brûlet,et al.  Improvement of data treatment in small-angle neutron scattering , 2007 .

[21]  G. Tinti,et al.  Looking at single photons using hybrid detectors , 2015 .

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  Manfred Burghammer,et al.  A customizable software for fast reduction and analysis of large X-ray scattering data sets: applications of the new DPDAK package to small-angle X-ray scattering and grazing-incidence small-angle X-ray scattering , 2014, Journal of applied crystallography.

[24]  A. Thünemann,et al.  Nanoparticle size distribution quantification: results of a small-angle X-ray scattering inter-laboratory comparison , 2017, Journal of applied crystallography.

[25]  Brian Richard Pauw,et al.  Everything SAXS: small-angle scattering pattern collection and correction , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  O. Glatter,et al.  Determination of particle-size distribution functions from small-angle scattering data by means of the indirect transformation method , 1980 .

[27]  P. F. Peterson,et al.  Mantid - Data Analysis and Visualization Package for Neutron Scattering and $μ SR$ Experiments , 2014, 1407.5860.

[28]  T. Narayanan,et al.  Quantitative SAXS analysis of the P123/water/ethanol ternary phase diagram. , 2006, The journal of physical chemistry. B.

[29]  U. Wiesner,et al.  In Situ Study of Evaporation-Induced Surface Structure Evolution in Asymmetric Triblock Terpolymer Membranes , 2016 .

[30]  R. Mozzi,et al.  Multiple scattering of X-rays by amorphous samples , 1966 .

[31]  S. Mann,et al.  Hydrophobic nanoparticles promote lamellar to inverted hexagonal transition in phospholipid mesophases. , 2015, Soft matter.

[32]  D. I. Svergun,et al.  Structure Analysis by Small-Angle X-Ray and Neutron Scattering , 1987 .