Modeling and data-driven parameter estimation for woven fabrics

Accurate estimation of mechanical parameters for simulation of woven fabrics is essential in many fields. To facilitate this we first present a new orthotropic hyperelastic constitutive model for woven fabrics. Next, we design an experimental protocol for characterizing real fabrics based on commercially available tests. Finally, we create a method for accurately fitting the material parameters to the experimental data. The last step is accomplished by solving inverse problems based on a Catmull-Clark subdivision finite element discretization of the Kirchhoff-Love equations for thin shells. Using this approach we are able to reproduce the fully nonlinear behavior corresponding to the captured data with a small number of parameters while maintaining all fundamental invariants from continuum mechanics. The resulting constitutive model can be used with any discretization (e.g., simple triangle meshes) and not just subdivision finite elements. We illustrate the entire process with results for five types of fabric and compare photo reference of the real fabrics to the simulated equivalents.

[1]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[2]  Xungai Wang,et al.  Physical and mechanical testing of textiles , 2008 .

[3]  Nadia Magnenat-Thalmann,et al.  Stop-and-go cloth draping , 2007, The Visual Computer.

[4]  Mikhail Itskov,et al.  Composite laminates: nonlinear interlaminar stress analysis by multi-layer shell elements , 2000 .

[5]  Yijing Li,et al.  Stable orthotropic materials , 2014, Symposium on Computer Animation.

[6]  Jessica K. Hodgins,et al.  Estimating cloth simulation parameters from video , 2003, SCA '03.

[7]  Kwansoo Chung,et al.  Constitutive modeling of woven composites considering asymmetric/anisotropic, rate dependent, and nonlinear behavior , 2007 .

[8]  Wolfgang Straßer,et al.  A consistent bending model for cloth simulation with corotational subdivision finite elements , 2006 .

[9]  F. T. P. B.Sc. 26—THE “HANDLE” OF CLOTH AS A MEASURABLE QUANTITY , 1930 .

[10]  Nadia Magnenat-Thalmann,et al.  A simple approach to nonlinear tensile stiffness for accurate cloth simulation , 2009, TOGS.

[11]  Mathieu Desbrun,et al.  Discrete shells , 2003, SCA '03.

[12]  Steve Marschner,et al.  Data‐Driven Estimation of Cloth Simulation Models , 2012, Comput. Graph. Forum.

[13]  Huamin Wang,et al.  Data-driven elastic models for cloth: modeling and measurement , 2011, ACM Trans. Graph..

[14]  Pier Giorgio Minazio,et al.  FAST – Fabric Assurance by Simple Testing , 1995 .

[15]  Joseph Teran,et al.  Simulation of nonlinear Kirchhoff-Love thin shells using subdivision finite elements , 2017 .

[16]  R. Postle,et al.  On the Poisson's ratios of a woven fabric , 2005 .

[17]  Steve Marschner,et al.  Modeling and estimation of internal friction in cloth , 2013, ACM Trans. Graph..

[18]  Michael J. King,et al.  A continuum constitutive model for the mechanical behavior of woven fabrics including slip and failure , 2005 .

[19]  A. J. Fossard,et al.  Modeling and estimation , 1995 .

[20]  Q.-S. Zheng,et al.  On transversely isotropic, orthotropic and relative isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Part I: Two dimensional orthotropic and relative isotropic functions and three dimensional relative isotropic functions , 1993 .

[21]  Steve Marschner,et al.  Simulating knitted cloth at the yarn level , 2008, ACM Trans. Graph..

[22]  O. Schenk,et al.  ON FAST FACTORIZATION PIVOTING METHODS FOR SPARSE SYMMETRI C INDEFINITE SYSTEMS , 2006 .

[23]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[24]  D. N. E. Cooper,et al.  A Bias Extension Test , 1963 .

[25]  Konrad Polthier,et al.  Koiter's Thin Shells on Catmull-Clark Limit Surfaces , 2011, VMV.

[26]  Miguel A. Otaduy,et al.  Modeling and Estimation of Energy‐Based Hyperelastic Objects , 2016, Comput. Graph. Forum.

[27]  Niles A. Pierce,et al.  An Introduction to the Adjoint Approach to Design , 2000 .

[28]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[29]  Michael C. H. Wu,et al.  Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials , 2015 .

[30]  Jess Power,et al.  Fabric objective measurements for commercial 3D virtual garment simulation , 2013 .

[31]  Tushar K. Ghosh,et al.  Characterization of fabric bending behavior: A review of measurement principles , 2003 .

[32]  Miguel A. Otaduy,et al.  Yarn-level simulation of woven cloth , 2014, ACM Trans. Graph..

[33]  R. Ogden Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[34]  Abdelwaheb Dogui,et al.  Finite element analysis of bias extension test using an orthotropic hyperelastic continuum model for woven fabric , 2011 .

[35]  Robert W. Williams,et al.  Measuring and modeling the anisotropic, nonlinear and hysteretic behavior of woven fabrics , 2010 .

[36]  Mikhail Itskov,et al.  A generalized orthotropic hyperelastic material model with application to incompressible shells , 2001 .

[37]  J. D. Owen,et al.  47—CLOTH STIFFNESS AND HYSTERESIS IN BENDING , 1964 .

[38]  Nadia Magnenat-Thalmann,et al.  The simulation of cloth using accurate physical parameters , 2008 .

[39]  Ronald Fedkiw,et al.  Simulation of clothing with folds and wrinkles , 2003, SCA '03.

[40]  川端 季雄,et al.  The standardization and analysis of hand evaluation. , 1975 .

[41]  Hongyi Xu,et al.  Nonlinear material design using principal stretches , 2015, ACM Trans. Graph..

[42]  Nadia Magnenat-Thalmann,et al.  From Measured Fabric to the Simulation of Cloth , 2007, 2007 10th IEEE International Conference on Computer-Aided Design and Computer Graphics.

[43]  Q.-S. Zheng,et al.  On transversely isotropic, orthotropic and relative isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Part V: The irreducibility of the representations for three dimensional orthotropic functions and the summary , 1993 .

[44]  T. Rolich,et al.  Determining Pseudo Poisson’s Ratio of Woven Fabric with a Digital Image Correlation Method , 2009 .