Shaping the output pulse of a linear-transformer-driver module.

We demonstrate that a wide variety of current-pulse shapes can be generated using a linear-transformer-driver (LTD) module that drives an internal water-insulated transmission line. The shapes are produced by varying the timing and initial charge voltage of each of the module's cavities. The LTD-driven accelerator architecture outlined in [Phys. Rev. ST Accel. Beams 10, 030401 (2007)] provides additional pulse-shaping flexibility by allowing the modules that drive the accelerator to be triggered at different times. The module output pulses would be combined and symmetrized by water-insulated radial-transmission-line impedance transformers [Phys. Rev. ST Accel. Beams 11, 030401 (2008)].

[1]  J. A. Lott,et al.  Water-dielectric-breakdown relation for the design of large-area multimegavolt pulsed-power systems , 2006 .

[2]  D. Rovang,et al.  Pencil-like mm-size electron beams produced with linear inductive voltage adders (LIVA) , 1996 .

[3]  B. Kovalchuk,et al.  Numerical Analysis of a Pulsed Compact LTD System for Electron Beam-Driven Radiography , 2006, IEEE Transactions on Plasma Science.

[4]  K.W. Reed,et al.  Genetic Optimization for Pulsed-Power System Configuration , 2009, IEEE Transactions on Plasma Science.

[5]  E. Waisman,et al.  Pulse power for future and past X-ray simulators , 2002 .

[6]  W. Stygar,et al.  Optimized transmission-line impedance transformers for petawatt-class pulsed-power accelerators , 2008 .

[7]  J. J. Ramirez,et al.  Dielectric-breakdown tests of water at 6 MV , 2009 .

[8]  M. Knudson,et al.  Equation of state measurements in liquid deuterium to 70 GPa. , 2001, Physical review letters.

[9]  J.-P. Davis,et al.  Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments , 2005 .

[10]  S. Portillo,et al.  Design, Simulation, and Fault Analysis of a 6.5-MV LTD for Flash X-Ray Radiography , 2006, IEEE Transactions on Plasma Science.

[11]  S. N. Volkov,et al.  Primary energy storages based on linear transformer stages , 2003 .

[12]  A. A. Kim,et al.  Fast primary storage device utilizing a linear pulse transformer , 1997 .

[13]  I. Smith Induction voltage adders and the induction accelerator family , 2004 .

[14]  William A. Stygar,et al.  Experimental configuration for isentropic compression of solids using pulsed magnetic loading , 2001 .

[15]  M. Knudson,et al.  Magnetically driven isentropic compression experiments on the Z accelerator , 2001 .

[16]  J. Chittenden,et al.  The different dynamical modes of nested wire array Z pinches , 2001 .

[17]  D. Bliss,et al.  Magnetically driven isentropic compression to multimegabar pressures using shaped current pulses on the Z accelerator , 2004 .

[18]  高木 浩一,et al.  14th IEEE International Pulsed Power Conference , 2003 .

[19]  M. Cuneo,et al.  Architecture of petawatt-class z-pinch accelerators. , 2007 .

[20]  Bell,et al.  Plasma formation in metallic wire Z pinches , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Andrew G. Glen,et al.  APPL , 2001 .

[22]  R. C. Pardo,et al.  Proceedings of the XIX international Linac conference , 1999 .

[23]  李幼升,et al.  Ph , 1989 .

[24]  A. Dangor,et al.  The effect of current prepulse on wire array Z-pinch implosions , 2002 .

[25]  A. Dangor,et al.  Snowplow-like behavior in the implosion phase of wire array Z pinches , 2002 .