Path integral approach to multiple scattering
暂无分享,去创建一个
[1] Nth‐order multifrequency coherence functions: A functional path integral approach. II , 1980 .
[2] L. M. Roth. Effective-medium approximation for liquid metals , 1974 .
[3] H. Ehrenreich,et al. Single-site approximations in the electronic theory of liquid metals , 1971 .
[4] E. Gross. Applications of path integrals , 1978 .
[5] V. Dallacasa. Self-consistent electron Green function of a high-density disordered system , 1975 .
[6] C. DeWitt-Morette,et al. Techniques and Applications of Path Integration , 1981 .
[7] E. Gross. Multiple scattering in random media. III. Coherent potential propagators and fluctuations , 1981 .
[8] T. Lukes,et al. A path integral approach to disordered systems , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[9] J. M. Luttinger,et al. Density of electronic energy levels in disordered systems , 1975 .
[10] J. Klauder. The modification of electron energy levels by impurity atoms , 1961 .
[11] P. Wallace,et al. New developments in semiconductors , 1973 .
[12] S. Termini,et al. Functional techniques in physics , 1970 .
[13] K. Freed. Electron Localization in Disordered Systems , 1972 .
[14] P. Chow,et al. Applications of Function Space Integrals to Problems in Wave Propagation in Random Media , 1972 .
[15] R. Feynman,et al. Quantum Mechanics and Path Integrals , 1965 .