Large deviations for random walks on Galton–Watson trees: averaging and uncertainty

[1]  G. Grimmett,et al.  Random Electrical Networks on Complete Graphs II: Proofs , 2001, math/0107068.

[2]  B. Virág Fast graphs for the random walker , 2001, math/0102200.

[3]  Ofer Zeitouni,et al.  Quenched, annealed and functional large deviations for one-dimensional random walk in random environment , 2003 .

[4]  Alain-Sol Sznitman,et al.  Slowdown estimates and central limit theorem for random walks in random environment , 2000 .

[5]  Alain-Sol Sznitman,et al.  Slowdown and neutral pockets for a random walk in random environment , 1999 .

[6]  Alain-Sol Sznitman,et al.  A law of large numbers for random walks in random environment , 1999 .

[7]  Ãgoston Pisztora,et al.  Large Deviation Principle for Random Walk in a Quenched Random Environment in the Low Speed Regime , 1999 .

[8]  O. Zeitouni,et al.  Precise large deviation estimates for a one-dimensional random walk in a random environment , 1999 .

[9]  M. Zerner,et al.  LYAPOUNOV EXPONENTS AND QUENCHED LARGE DEVIATIONS FOR MULTIDIMENSIONAL RANDOM WALK IN RANDOM ENVIRONMENT , 1998 .

[10]  Ofer Zeitouni,et al.  Quenched Sub-Exponential Tail Estimates for One-Dimensional Random Walk in Random Environment , 1998 .

[11]  Amir Dembo,et al.  Tail estimates for one-dimensional random walk in random environment , 1996 .

[12]  Russell Lyons,et al.  Ergodic theory on Galton—Watson trees: speed of random walk and dimension of harmonic measure , 1995, Ergodic Theory and Dynamical Systems.

[13]  Frank den Hollander,et al.  Large Deviations for a Random Walk in Random Environment , 1994 .

[14]  Russell Lyons,et al.  Random Walks, Capacity and Percolation on Trees , 1992 .

[15]  F. Spitzer Principles Of Random Walk , 1965 .

[16]  Ofer Zeitouni,et al.  Large Deviations for One-Dimensional Random Walk in a Random Environment a Survey , 1999 .

[17]  A. Sznitman Brownian motion, obstacles, and random media , 1998 .