Asymptotic Single and Multiple Scale Expansions in the Low Mach Number Limit

An asymptotic analysis of the Euler equations in the limit of vanishing Mach number is presented, which can be employed to extend the validity of numerical methods from the compressible to the low Mach number regime [R. Klein, J. Comput. Phys., 121 (1995), pp. 213--237], [L. Hoffmann and A. Meister, in Proceedings of the Fourth ECCOMAS Computational Fluid Dynamics Conference, Vol. 1, C. Hirsch et al., eds., Athens, 1998, pp. 567--572]. The work is based on the analysis recently proposed by Klein, whereby the paper is devoted to a rigorous mathematical justification of this asymptotic investigation in order to give reliable statements concerning the assumptions under which the results hold. In contrast to Klein, a single scale as well as multiple scale expansion is used depending on the spatial domain under consideration.

[1]  Wilhelm Schneider,et al.  Mathematische Methoden der Strömungsmechanik , 1978 .

[2]  A. Majda,et al.  Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .

[3]  James A. Sethian,et al.  THE DERIVATION AND NUMERICAL SOLUTION OF THE EQUATIONS FOR ZERO MACH NUMBER COMBUSTION , 1985 .

[4]  C.-D. Munz,et al.  The Multiple Pressure Variable Approach for the NumericalApproximation of Weakly Compressible Fluid Flow , 1994 .

[5]  F. Bartlmä,et al.  The transition from slow burning to detonation , 1980 .

[6]  I. Moen,et al.  The mechans of transition from deflagration to detonation in vapor cloud explosions , 1980 .

[7]  Lars Berend Hoffmann Ein zeitlich selbstadaptives numerisches Verfahren zur Berechnung von Strömungen aller Mach-Zahlen basierend auf Mehrskalenasymptotik und diskreter Datenanalyse , 2000 .

[8]  R. Klein Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .

[9]  K. Asano On the incompressible limit of the compressible Euler equation , 1987 .

[10]  A. Erdélyi Asymptotic Expansions of Fourier Integrals Involving Logarithmic Singularities , 1956 .

[11]  J. Cole,et al.  Multiple Scale and Singular Perturbation Methods , 1996 .

[12]  Sabine Roller,et al.  Multiple Pressure Variable (MPV) Approach for Low Mach Number Flows Based on Asymptotic Analysis , 1996 .

[13]  S. Ukai The incompressible limit and the initial layer of the compressible Euler equation , 1986 .

[14]  Bernard J. Matkowsky,et al.  Flames as gasdynamic discontinuities , 1982, Journal of Fluid Mechanics.

[15]  A. Majda,et al.  Compressible and incompressible fluids , 1982 .

[16]  H. Goering Schneider, W., Mathematische Methoden der Strömungsmechanik, Braunschweig. Vieweg. 1978. IX, 261 S., 94 Abb., DM 39,80 , 1979 .