Asymptotic Single and Multiple Scale Expansions in the Low Mach Number Limit
暂无分享,去创建一个
[1] Wilhelm Schneider,et al. Mathematische Methoden der Strömungsmechanik , 1978 .
[2] A. Majda,et al. Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .
[3] James A. Sethian,et al. THE DERIVATION AND NUMERICAL SOLUTION OF THE EQUATIONS FOR ZERO MACH NUMBER COMBUSTION , 1985 .
[4] C.-D. Munz,et al. The Multiple Pressure Variable Approach for the NumericalApproximation of Weakly Compressible Fluid Flow , 1994 .
[5] F. Bartlmä,et al. The transition from slow burning to detonation , 1980 .
[6] I. Moen,et al. The mechans of transition from deflagration to detonation in vapor cloud explosions , 1980 .
[7] Lars Berend Hoffmann. Ein zeitlich selbstadaptives numerisches Verfahren zur Berechnung von Strömungen aller Mach-Zahlen basierend auf Mehrskalenasymptotik und diskreter Datenanalyse , 2000 .
[8] R. Klein. Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .
[9] K. Asano. On the incompressible limit of the compressible Euler equation , 1987 .
[10] A. Erdélyi. Asymptotic Expansions of Fourier Integrals Involving Logarithmic Singularities , 1956 .
[11] J. Cole,et al. Multiple Scale and Singular Perturbation Methods , 1996 .
[12] Sabine Roller,et al. Multiple Pressure Variable (MPV) Approach for Low Mach Number Flows Based on Asymptotic Analysis , 1996 .
[13] S. Ukai. The incompressible limit and the initial layer of the compressible Euler equation , 1986 .
[14] Bernard J. Matkowsky,et al. Flames as gasdynamic discontinuities , 1982, Journal of Fluid Mechanics.
[15] A. Majda,et al. Compressible and incompressible fluids , 1982 .
[16] H. Goering. Schneider, W., Mathematische Methoden der Strömungsmechanik, Braunschweig. Vieweg. 1978. IX, 261 S., 94 Abb., DM 39,80 , 1979 .