Synthesis and structural features of black TiO2 nanotubes after annealing in hydrogen

[1]  S. S. Patil,et al.  Visible photoresponse of TiO2 nanotubes in comparison to that of nanoparticles and anodic thin film , 2022, Catalysis Today.

[2]  D. Kotsikau,et al.  Nature of paramagnetic defects in black titanium dioxide nanotubes , 2022, Materials Chemistry and Physics.

[3]  M. Ivanovskaya,et al.  Effect of fluoride-mediated transformations on electrocatalytic performance of thermally treated TiO2 nanotubular layers , 2019, Journal of Fluorine Chemistry.

[4]  M. Xing,et al.  Modifications on reduced titanium dioxide photocatalysts: A review , 2017 .

[5]  Lei Wang,et al.  Ti3+ Self-Doped Black TiO2 Nanotubes with Mesoporous Nanosheet Architecture as Efficient Solar-Driven Hydrogen Evolution Photocatalysts , 2017 .

[6]  Xuemei Zhou,et al.  Photocatalysis with TiO2 Nanotubes: “Colorful” Reactivity and Designing Site-Specific Photocatalytic Centers into TiO2 Nanotubes , 2017, 2004.05011.

[7]  A. Jagminas,et al.  Structural and fluorescence characterization of anodic alumina/carbon composites formed in tartaric acid solution , 2017 .

[8]  Kan Zhang,et al.  Surface Localization of Defects in Black TiO2: Enhancing Photoactivity or Reactivity. , 2017, The journal of physical chemistry letters.

[9]  M. Ivanovskaya,et al.  Electrocatalytic activity of Au nanoparticles onto TiO2 nanotubular layers in oxygen electroreduction reaction: size and support effects , 2016 .

[10]  Tianquan Lin,et al.  Progress in Black Titania: A New Material for Advanced Photocatalysis , 2016 .

[11]  Lei Liu,et al.  Black titanium dioxide (TiO2) nanomaterials. , 2015, Chemical Society reviews.

[12]  Minghong Wu,et al.  C-axis preferentially oriented and fully activated TiO2 nanotube arrays for lithium ion batteries and supercapacitors , 2014 .

[13]  Chongyin Yang,et al.  Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting , 2014 .

[14]  M. Hartmann,et al.  Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. , 2014, Nano letters.

[15]  E. Xie,et al.  Preparation of black TiO2 by hydrogen plasma assisted chemical vapor deposition and its photocatalytic activity , 2014 .

[16]  C. Xie,et al.  Catalytic oxidation of formaldehyde on surface of HTiO2/HCTiO2 without light illumination at room temperature , 2014 .

[17]  Wei Wang,et al.  Hydrogenation temperature related inner structures and visible-light-driven photocatalysis of N–F co-doped TiO2 nanosheets , 2014 .

[18]  Xiaoming Xie,et al.  H‐Doped Black Titania with Very High Solar Absorption and Excellent Photocatalysis Enhanced by Localized Surface Plasmon Resonance , 2013 .

[19]  P. Fornasiero,et al.  The power of EPR techniques in revealing active sites in heterogeneous photocatalysis: The case of anion doped TiO2 , 2013 .

[20]  Nan Zhang,et al.  Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. , 2013, Nanoscale.

[21]  Jinghua Guo,et al.  Properties of Disorder-Engineered Black Titanium Dioxide Nanoparticles through Hydrogenation , 2013, Scientific Reports.

[22]  Fan Zuo,et al.  Facile synthesis of thermal- and photostable titania with paramagnetic oxygen vacancies for visible-light photocatalysis. , 2013, Chemistry.

[23]  Haitao Huang,et al.  Hydrogenated TiO2 Nanotube Arrays as High‐Rate Anodes for Lithium‐Ion Microbatteries , 2012 .

[24]  M. Marelli,et al.  Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. , 2012, Journal of the American Chemical Society.

[25]  Nicole Grobert,et al.  Nomenclature of sp2 carbon nanoforms , 2012 .

[26]  Nathan T. Hahn,et al.  Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. , 2012, Journal of the American Chemical Society.

[27]  M. Paganini,et al.  On the Nature of Reduced States in Titanium Dioxide As Monitored by Electron Paramagnetic Resonance. I: The Anatase Case , 2011 .

[28]  D. Su,et al.  Recent progress on the growth mechanism of carbon nanotubes: a review. , 2011, ChemSusChem.

[29]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[30]  S. Łoś,et al.  EPR and magnetism of the nanostructured natural carbonaceous material shungite , 2010 .

[31]  D. Raftery,et al.  Solid-state NMR and EPR analysis of carbon-doped titanium dioxide photocatalysts (TiO(2-)(x)C(x)). , 2009, Solid state nuclear magnetic resonance.

[32]  H. Fu,et al.  Efficient TiO2 Photocatalysts from Surface Hybridization of TiO2 Particles with Graphite‐like Carbon , 2008 .

[33]  P. Schmuki,et al.  Phase Composition, Size, Orientation, and Antenna Effects of Self-Assembled Anodized Titania Nanotube Arrays : A Polarized Micro-Raman Investigation , 2008 .

[34]  A. Murphy Does carbon doping of TiO2 allow water splitting in visible light? Comments on Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2 for efficient water splitting , 2008 .

[35]  M. Misra,et al.  A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water , 2007 .

[36]  J. Macák,et al.  Photoelectrochemical properties of N-doped self-organized titania nanotube layers with different thicknesses , 2006 .

[37]  A. Zarbin,et al.  Porous carbon obtained by the pyrolysis of TiO2/poly(furfuryl alcohol) nanocomposite: preparation, characterization and utilization for adsorption of reactive dyes from aqueous solution , 2006 .

[38]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[39]  Sun-Jae Kim,et al.  Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst , 2005 .

[40]  Vladislav V. Yakovlev,et al.  Infrared response of vitreous titanium dioxide films with anatase short-range order , 2002 .

[41]  John Robertson,et al.  Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon , 2001 .

[42]  Kamil A. Moldosanov,et al.  Reflectivities of light-absorptive coatings within visible-wavelength range , 2000, SPIE Optics + Photonics.

[43]  Yongli He,et al.  Raman scattering study on anatase TiO2 nanocrystals , 2000 .

[44]  D. Shilo,et al.  Electron spin resonance study of carbon nanotubes , 1998 .

[45]  T. Barr,et al.  Concerted x‐ray photoelectron spectroscopy study of the character of select carbonaceous materials , 1992 .

[46]  R. Siegel,et al.  Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2 , 1990 .

[47]  Fujio Izumi,et al.  Raman spectrum of anatase, TiO2 , 1978 .

[48]  A. Bard,et al.  Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. , 2006, Nano letters.

[49]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[50]  G. Busca,et al.  FT Raman and FTIR studies of titanias and metatitanate powders , 1994 .

[51]  R. Baker,et al.  Catalytic growth of carbon filaments , 1989 .