MoS2 nanoplates assembled on electrospun polyacrylonitrile-metal organic framework-derived carbon fibers for lithium storage

[1]  Dan Sun,et al.  MoS2/Graphene Nanosheets from Commercial Bulky MoS2 and Graphite as Anode Materials for High Rate Sodium‐Ion Batteries , 2018 .

[2]  G. Wang,et al.  Vertically Aligned MoS2 Nanosheets Patterned on Electrochemically Exfoliated Graphene for High‐Performance Lithium and Sodium Storage , 2018 .

[3]  Y. Gogotsi,et al.  MoS2 -on-MXene Heterostructures as Highly Reversible Anode Materials for Lithium-Ion Batteries. , 2018, Angewandte Chemie.

[4]  Kyeongjae Cho,et al.  2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries , 2018, Nature Nanotechnology.

[5]  R. Zhao,et al.  ZnO/rGO/C composites derived from metal–organic framework as advanced anode materials for Li-ion and Na-ion batteries , 2018, Journal of Materials Science.

[6]  N. Lee,et al.  Porous MoS2@C heteroshell with a Si yolk structure with improved lithium transport properties and superior cycle stability , 2017 .

[7]  Lijun Wang,et al.  Metallic 1T MoS2 nanosheet arrays vertically grown on activated carbon fiber cloth for enhanced Li-ion storage performance , 2017 .

[8]  C. Guan,et al.  Ultrathin MoS2 Nanosheets@Metal Organic Framework‐Derived N‐Doped Carbon Nanowall Arrays as Sodium Ion Battery Anode with Superior Cycling Life and Rate Capability , 2017 .

[9]  Ling Zhang,et al.  3D Ordered Macroporous MoS2@C Nanostructure for Flexible Li‐Ion Batteries , 2017, Advanced materials.

[10]  V. Dravid,et al.  Exfoliated MoS2 nanosheets confined in 3-D hierarchical carbon nanotube@graphene architecture with superior sodium-ion storage , 2017 .

[11]  M. Yousaf,et al.  Controlled Synthesis of Core–Shell Carbon@MoS2 Nanotube Sponges as High‐Performance Battery Electrodes , 2016, Advanced materials.

[12]  H. Duan,et al.  3D composites of layered MoS2 and graphene nanoribbons for high performance lithium-ion battery anodes , 2016 .

[13]  Sen Xin,et al.  Graphene-Wrapped Graphitic Carbon Hollow Spheres: Bioinspired Synthesis and Applications in Batteries and Supercapacitors , 2016 .

[14]  X. Lou,et al.  Hierarchical Tubular Structures Composed of Co3 O4 Hollow Nanoparticles and Carbon Nanotubes for Lithium Storage. , 2016, Angewandte Chemie.

[15]  T. Sagawa,et al.  Control of physical properties of carbon nanofibers obtained from coaxial electrospinning of PMMA and PAN with adjustable inner/outer nozzle-ends , 2016, Nanoscale Research Letters.

[16]  R. Mendes,et al.  Extremely Weak van der Waals Coupling in Vertical ReS2 Nanowalls for High‐Current‐Density Lithium‐Ion Batteries , 2016, Advanced materials.

[17]  H. Zeng,et al.  Monolayer MoS2-Graphene Hybrid Aerogels with Controllable Porosity for Lithium-Ion Batteries with High Reversible Capacity. , 2016, ACS applied materials & interfaces.

[18]  Shuhong Yu,et al.  From Bimetallic Metal‐Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis , 2015, Advanced materials.

[19]  Jingshan Luo,et al.  MoS2 architectures supported on graphene foam/carbon nanotube hybrid films: highly integrated frameworks with ideal contact for superior lithium storage , 2015 .

[20]  Hao Sun,et al.  Aligned carbon nanotube/molybdenum disulfide hybrids for effective fibrous supercapacitors and lithium ion batteries , 2015 .

[21]  Yunpeng Huang,et al.  Electrospun porous carbon nanofiber@MoS2 core/sheath fiber membranes as highly flexible and binder-free anodes for lithium-ion batteries. , 2015, Nanoscale.

[22]  X. Lou,et al.  Ultrathin MoS₂ Nanosheets Supported on N-doped Carbon Nanoboxes with Enhanced Lithium Storage and Electrocatalytic Properties. , 2015, Angewandte Chemie.

[23]  Wensheng Yan,et al.  Vacancy-induced ferromagnetism of MoS2 nanosheets. , 2015, Journal of the American Chemical Society.

[24]  Yan Yu,et al.  Fast Li Storage in MoS2‐Graphene‐Carbon Nanotube Nanocomposites: Advantageous Functional Integration of 0D, 1D, and 2D Nanostructures , 2015 .

[25]  Zhiyong Tang,et al.  Growth of Polypyrrole Ultrathin Films on MoS2 Monolayers as High‐Performance Supercapacitor Electrodes , 2015, Advanced materials.

[26]  Cheol‐Min Park,et al.  ZnTe and ZnTe/C nanocomposite: a new electrode material for high-performance rechargeable Li-ion batteries , 2014 .

[27]  Sen Xin,et al.  Carbon nanofibers decorated with molybdenum disulfide nanosheets: synergistic lithium storage and enhanced electrochemical performance. , 2014, Angewandte Chemie.

[28]  Yunhui Huang,et al.  Hierarchical MoS2 nanosheet/active carbon fiber cloth as a binder-free and free-standing anode for lithium-ion batteries. , 2014, Nanoscale.

[29]  R. Li,et al.  Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties , 2013 .

[30]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[31]  Dongyun Chen,et al.  CTAB-assisted synthesis of single-layer MoS2–graphene composites as anode materials of Li-ion batteries , 2013 .

[32]  Ya‐Xia Yin,et al.  Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries. , 2012, Chemical communications.

[33]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[34]  Guangmin Zhou,et al.  Graphene/metal oxide composite electrode materials for energy storage , 2012 .

[35]  X. Lou,et al.  Glucose-assisted growth of MoS2 nanosheets on CNT backbone for improved lithium storage properties. , 2011, Chemistry.

[36]  Kun Chang,et al.  Single-layer MoS2/graphene dispersed in amorphous carbon: towards high electrochemical performances in rechargeable lithium ion batteries , 2011 .

[37]  Tomoki Akita,et al.  From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. , 2011, Journal of the American Chemical Society.