Extension of the Complete Flux Scheme to Systems of Conservation Laws

We present the extension of the complete flux scheme to advection-diffusion-reaction systems. For stationary problems, the flux approximation is derived from a local system boundary value problem for the entire system, including the source term vector. Therefore, the numerical flux vector consists of a homogeneous and an inhomogeneous component, corresponding to the advection-diffusion operator and the source term, respectively. For time-dependent systems, the numerical flux is determined from a quasi-stationary boundary value problem containing the time-derivative in the source term. Consequently, the complete flux scheme results in an implicit semidiscretization. The complete flux scheme is validated for several test problems.

[1]  Wha Wil Schilders,et al.  An exponential fitting scheme for the electrothermal device equations specifically for the simulation of avalanche generation , 1992 .

[2]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[3]  T. Poinsot,et al.  Theoretical and numerical combustion , 2001 .

[4]  ten Jhm Jan Thije Boonkkamp,et al.  A Compact High Order Finite Volume Scheme for Advection‐Diffusion‐Reaction Equations , 2009 .

[5]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[6]  Gene H. Golub,et al.  Matrix computations , 1983 .

[7]  Wil H. A. Schilders,et al.  Uniform Numerical Methods for Problems with Initial and Boundary Layers , 1980 .

[8]  ten Jhm Jan Thije Boonkkamp,et al.  Extension of the complete flux scheme to time-dependent conservation laws , 2010 .

[9]  N. Higham Functions of Matrices: Theory and Computation (Other Titles in Applied Mathematics) , 2008 .

[10]  van J Jan Dijk,et al.  Modelling of transport in non-equilibrium atmospheric plasmas , 2010 .

[11]  R. H. Fowler The Mathematical Theory of Non-Uniform Gases , 1939, Nature.

[12]  Iu. P. Raizer Gas Discharge Physics , 1991 .

[13]  P. Wesseling Principles of Computational Fluid Dynamics , 2000 .

[14]  J. H. M. ten Thije Boonkkamp,et al.  The Finite Volume-Complete Flux Scheme for Advection-Diffusion-Reaction Equations , 2011, J. Sci. Comput..

[15]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[16]  Chia-Jung Hsu Numerical Heat Transfer and Fluid Flow , 1981 .

[17]  R.M.M. Mattheij,et al.  Discretization of the stationary convection-diffusion-reaction equation , 1996 .

[18]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[19]  Vincent Giovangigli,et al.  Convergent iterative methods for multicomponent diffusion , 1991, IMPACT Comput. Sci. Eng..

[20]  Vincent Giovangigli,et al.  Mass conservation and singular multicomponent diffusion algorithms , 1990, IMPACT Comput. Sci. Eng..

[21]  Lei Liu,et al.  Mass conservative finite volume discretization of the continuity equations in multi-component mixtures , 2011, J. Comput. Phys..

[22]  Chi-Wang Shu,et al.  High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..

[23]  H. Cullinan,et al.  Analysis of Flux Equations of Multicomponent Diffusion , 1965 .

[24]  Alexandre Ern,et al.  Multicomponent transport algorithms , 1994 .