The correlation theory of the chemical bond

The quantum mechanical description of the chemical bond is generally given in terms of delocalized bonding orbitals, or, alternatively, in terms of correlations of occupations of localised orbitals. However, in the latter case, multiorbital correlations were treated only in terms of two-orbital correlations, although the structure of multiorbital correlations is far richer; and, in the case of bonds established by more than two electrons, multiorbital correlations represent a more natural point of view. Here, for the first time, we introduce the true multiorbital correlation theory, consisting of a framework for handling the structure of multiorbital correlations, a toolbox of true multiorbital correlation measures, and the formulation of the multiorbital correlation clustering, together with an algorithm for obtaining that. These make it possible to characterise quantitatively, how well a bonding picture describes the chemical system. As proof of concept, we apply the theory for the investigation of the bond structures of several molecules. We show that the non-existence of well-defined multiorbital correlation clustering provides a reason for debated bonding picture.

[1]  G. Frenking,et al.  Critical comments on "One molecule, two atoms, three views, four bonds?". , 2013, Angewandte Chemie.

[2]  Garnet Kin-Lic Chan,et al.  Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms. , 2016, The Journal of chemical physics.

[3]  Ryszard Horodecki,et al.  Informationally coherent quantum systems , 1994 .

[4]  Dimitri Van Neck,et al.  The density matrix renormalization group for ab initio quantum chemistry , 2014, The European Physical Journal D.

[5]  Markus Reiher,et al.  Orbital Entanglement in Bond-Formation Processes. , 2013, Journal of chemical theory and computation.

[6]  J. Pipek,et al.  Measures of spatial entanglement in a two-electron model atom , 2009 .

[7]  F. E. Jorge,et al.  Bond index: relation to second-order density matrix and charge fluctuations , 1985 .

[8]  O. Legeza,et al.  Entanglement patterns and generalized correlation functions in quantum many body systems , 2014, 1406.6643.

[9]  Rex Taylor A personal account , 1979 .

[10]  Ian Fleming,et al.  Comprar Molecular Orbitals and Organic Chemical Reactions : Student Edition | Clifford Bailey | 9780470746592 | Wiley , 2009 .

[11]  Odilon Chalvet Atoms and molecules in the ground state , 1975 .

[12]  F. Verstraete,et al.  Tensor product methods and entanglement optimization for ab initio quantum chemistry , 2014, 1412.5829.

[13]  Katharina Boguslawski,et al.  Orbital entanglement in quantum chemistry , 2014, 1409.8017.

[14]  G. Adesso,et al.  Measures and applications of quantum correlations , 2016, 1605.00806.

[15]  Reinhold Schneider,et al.  Tensor Product Approximation (DMRG) and Coupled Cluster method in Quantum Chemistry , 2013, 1310.2736.

[16]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[17]  Mickaël G. Delcey,et al.  Orbital entanglement and CASSCF analysis of the Ru–NO bond in a Ruthenium nitrosyl complex , 2015, Physical chemistry chemical physics : PCCP.

[18]  F. Matthias Bickelhaupt,et al.  A chemist's guide to valence bond theory , 2009, J. Comput. Chem..

[19]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[20]  Zoltán Rolik,et al.  An efficient linear-scaling CCSD(T) method based on local natural orbitals. , 2013, The Journal of chemical physics.

[21]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[22]  P. Ayers,et al.  Dissecting the bond-formation process of d10-metal–ethene complexes with multireference approaches , 2015, Theoretical Chemistry Accounts.

[23]  Min Zhang,et al.  Latent harmony in dicarbon between VB and MO theories through orthogonal hybridization of 3σg and 2σu , 2015, Chemical Science.

[24]  E. Fertitta,et al.  Investigation of metal-insulator like transition through the ab initio density matrix renormalization group approach , 2014, 1406.7038.

[25]  Marcel Nooijen,et al.  On the spin and symmetry adaptation of the density matrix renormalization group method. , 2008, The Journal of chemical physics.

[26]  T. Yanai,et al.  High-performance ab initio density matrix renormalization group method: applicability to large-scale multireference problems for metal compounds. , 2009, The Journal of chemical physics.

[27]  J. Sólyom,et al.  Optimizing the density-matrix renormalization group method using quantum information entropy , 2003 .

[28]  V. Vedral,et al.  Entanglement in Many-Body Systems , 2007, quant-ph/0703044.

[29]  B. A. Hess,et al.  Controlling the accuracy of the density-matrix renormalization-group method: The dynamical block state selection approach , 2002, cond-mat/0204602.

[30]  Garnet Kin-Lic Chan,et al.  The ab-initio density matrix renormalization group in practice. , 2015, The Journal of chemical physics.

[31]  M. Reiher,et al.  Quantum entanglement in carbon-carbon, carbon-phosphorus and silicon-silicon bonds. , 2014, Physical chemistry chemical physics : PCCP.

[32]  F. Herbut On mutual information in multipartite quantum states and equality in strong subadditivity of entropy , 2003, quant-ph/0311193.

[33]  A. Winter,et al.  Monogamy of quantum entanglement and other correlations , 2003, quant-ph/0310037.

[34]  R. Schneider,et al.  Tree Tensor Network State with Variable Tensor Order: An Efficient Multireference Method for Strongly Correlated Systems , 2015, Journal of chemical theory and computation.

[35]  Richard L. Martin,et al.  Ab initio quantum chemistry using the density matrix renormalization group , 1998 .

[36]  G. Lindblad Entropy, information and quantum measurements , 1973 .

[37]  Markus Reiher,et al.  The Density Matrix Renormalization Group Algorithm in Quantum Chemistry , 2010 .

[38]  Szil'ard Szalay,et al.  Partial separability revisited II: Multipartite entanglement measures , 2015, 1503.06071.

[39]  P. Hiberty,et al.  Quadruple bonding in C2 and analogous eight-valence electron species. , 2012, Nature chemistry.

[40]  Szilard Szalay,et al.  Partial separability revisited: Necessary and sufficient criteria , 2012, 1206.6253.

[41]  Ian Fleming,et al.  Molecular Orbitals and Organic Chemical Reactions , 2009 .

[42]  Sason Shaik,et al.  A Chemist's Guide to Valence Bond Theory , 2007 .

[43]  Mark M. Wilde,et al.  Quantum Information Theory , 2013 .

[44]  Quantum chemistry: Quadruply bonded carbon. , 2012, Nature chemistry.

[45]  Henry S Rzepa,et al.  One molecule, two atoms, three views, four bonds? , 2013, Angewandte Chemie.

[46]  István Mayer,et al.  Charge, bond order and valence in the AB initio SCF theory , 1983 .

[47]  P. Ayers,et al.  A quantum informational approach for dissecting chemical reactions , 2014, 1409.4867.

[48]  S. White,et al.  Measuring orbital interaction using quantum information theory , 2005, cond-mat/0508524.

[49]  O. Legeza,et al.  Quantum data compression, quantum information generation, and the density-matrix renormalization group method , 2004, cond-mat/0401136.

[50]  Quantum entanglement between electronic and vibrational degrees of freedom in molecules. , 2011, The Journal of chemical physics.

[51]  T. Paterek,et al.  Unified view of quantum and classical correlations. , 2009, Physical review letters.

[52]  R. Bader,et al.  Spatial localization of the electronic pair and number distributions in molecules , 1975 .

[53]  Mihály Kállay,et al.  Unconventional bond functions for quantum chemical calculations , 2015, Theoretical Chemistry Accounts.

[54]  M. Reiher,et al.  Quantum-information analysis of electronic states of different molecular structures , 2010, 1008.4607.

[55]  G. Chan,et al.  Entangled quantum electronic wavefunctions of the Mn₄CaO₅ cluster in photosystem II. , 2013, Nature chemistry.

[56]  EQUILIBRIUM STATISTICAL MECHANICS OF FERMION LATTICE SYSTEMS , 2002, math-ph/0211016.

[57]  Gilbert N. Lewis,et al.  The Atom and the Molecule , 1916, Resonance.

[58]  M. Wilde Quantum Information Theory: Noisy Quantum Shannon Theory , 2013 .

[59]  I. Mayer,et al.  Bond order and valence indices: A personal account , 2007, J. Comput. Chem..

[60]  Introduction to the Loge Theory , 1975 .

[61]  Ors Legeza,et al.  Entanglement production by independent quantum channels , 2005, cond-mat/0512270.