Structure and variation of CRISPR and CRISPR-flanking regions in deleted-direct repeat region Mycobacterium tuberculosis complex strains

[1]  Jianping Xie,et al.  The effect of Mycobacterium tuberculosis CRISPR-associated Cas2 (Rv2816c) on stress response genes expression, morphology and macrophage survival of Mycobacterium smegmatis. , 2016, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[2]  Y. Teo,et al.  SpoTyping: fast and accurate in silico Mycobacterium spoligotyping from sequence reads , 2016, Genome Medicine.

[3]  Rotem Sorek,et al.  CRISPR–Cas adaptation: insights into the mechanism of action , 2016, Nature Reviews Microbiology.

[4]  Akifumi Yamashita,et al.  TGS-TB: Total Genotyping Solution for Mycobacterium tuberculosis Using Short-Read Whole-Genome Sequencing , 2015, PloS one.

[5]  Sita J. Saunders,et al.  An updated evolutionary classification of CRISPR–Cas systems , 2015, Nature Reviews Microbiology.

[6]  Tanmoy Roychowdhury,et al.  Analysis of IS6110 insertion sites provide a glimpse into genome evolution of Mycobacterium tuberculosis , 2015, Scientific Reports.

[7]  Gang Sun,et al.  Southern East Asian origin and coexpansion of Mycobacterium tuberculosis Beijing family with Han Chinese , 2015, Proceedings of the National Academy of Sciences.

[8]  B. Graveley,et al.  Three CRISPR-Cas immune effector complexes coexist in Pyrococcus furiosus , 2015, RNA.

[9]  Francesc Coll,et al.  Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences , 2015, Genome Medicine.

[10]  Francesc Coll,et al.  A robust SNP barcode for typing Mycobacterium tuberculosis complex strains , 2014, Nature Communications.

[11]  Z. Mor,et al.  Molecular epidemiology and mapping of tuberculosis in Israel: do migrants transmit the disease to locals? , 2014, The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.

[12]  D. van Soolingen,et al.  Second worldwide proficiency study on variable number of tandem repeats typing of Mycobacterium tuberculosis complex. , 2014, The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.

[13]  M. Strunk,et al.  Single nucleotide polymorphism (SNP) analysis used for the phylogeny of the Mycobacterium tuberculosis complex based on a pyrosequencing assay , 2014, BMC Microbiology.

[14]  P. V. van Helden,et al.  Novel Cause of Tuberculosis in Meerkats, South Africa , 2013, Emerging infectious diseases.

[15]  Daniel J. Wilson,et al.  Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study , 2013, The Lancet. Infectious diseases.

[16]  Nigel J. Martin,et al.  SpolPred: rapid and accurate prediction of Mycobacterium tuberculosis spoligotypes from short genomic sequences , 2012, Bioinform..

[17]  Thomas R. Ioerger,et al.  Global Assessment of Genomic Regions Required for Growth in Mycobacterium tuberculosis , 2012, PLoS pathogens.

[18]  Jianping Xie,et al.  Comparative genomic structures of Mycobacterium CRISPR‐Cas , 2012, Journal of cellular biochemistry.

[19]  Nalin Rastogi,et al.  SITVITWEB--a publicly available international multimarker database for studying Mycobacterium tuberculosis genetic diversity and molecular epidemiology. , 2012, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[20]  Kira S. Makarova,et al.  Nature and Intensity of Selection Pressure on CRISPR-Associated Genes , 2011, Journal of bacteriology.

[21]  R. Siezen,et al.  SNP/RD Typing of Mycobacterium tuberculosis Beijing Strains Reveals Local and Worldwide Disseminated Clonal Complexes , 2011, PloS one.

[22]  Paul J. Freidlin,et al.  Quality assurance for molecular epidemiology of tuberculosis methods in the mycobacterium reference laboratory , 2011 .

[23]  M. Egger,et al.  “Pseudo-Beijing”: Evidence for Convergent Evolution in the Direct Repeat Region of Mycobacterium tuberculosis , 2011, PloS one.

[24]  Thomas R. Ioerger,et al.  High-Resolution Phenotypic Profiling Defines Genes Essential for Mycobacterial Growth and Cholesterol Catabolism , 2011, PLoS pathogens.

[25]  Stan J. J. Brouns,et al.  Evolution and classification of the CRISPR–Cas systems , 2011, Nature Reviews Microbiology.

[26]  Q. Gao,et al.  Phylogeny of Mycobacterium tuberculosis Beijing Strains Constructed from Polymorphisms in Genes Involved in DNA Replication, Recombination and Repair , 2011, PloS one.

[27]  Andrew Emili,et al.  A dual function of the CRISPR–Cas system in bacterial antivirus immunity and DNA repair , 2011, Molecular microbiology.

[28]  A. Izzo,et al.  Portrait of a Pathogen: The Mycobacterium tuberculosis Proteome In Vivo , 2010, PloS one.

[29]  Philippe Horvath,et al.  The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA , 2010, Nature.

[30]  D. van Soolingen,et al.  Phenotypic and genotypic analysis of multidrug-resistant tuberculosis in Ethiopia. , 2010, The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.

[31]  Jagath C Rajapakse,et al.  Detecting robust time-delayed regulation in Mycobacterium tuberculosis , 2009, BMC Genomics.

[32]  E. Rorman,et al.  Polymorphic Exact Tandem Repeat A (PETRA): a Newly Defined Lineage of Mycobacterium tuberculosis in Israel Originating Predominantly in Sub-Saharan Africa , 2009, Journal of Clinical Microbiology.

[33]  Lisa J. Murray,et al.  Genomic Diversity among Drug Sensitive and Multidrug Resistant Isolates of Mycobacterium tuberculosis with Identical DNA Fingerprints , 2009, PloS one.

[34]  L. Marraffini,et al.  CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA , 2008, Science.

[35]  G. O’Toole,et al.  Interaction between Bacteriophage DMS3 and Host CRISPR Region Inhibits Group Behaviors of Pseudomonas aeruginosa , 2008, Journal of bacteriology.

[36]  Fabio Luciani,et al.  spolTools: online utilities for analyzing spoligotypes of the Mycobacterium tuberculosis complex , 2008, Bioinform..

[37]  E. Koonin,et al.  A Novel Family of Sequence-specific Endoribonucleases Associated with the Clustered Regularly Interspaced Short Palindromic Repeats* , 2008, Journal of Biological Chemistry.

[38]  M. Ackermann,et al.  Stabilization of the genome of the mismatch repair deficient Mycobacterium tuberculosis by context-dependent codon choice , 2008, BMC Genomics.

[39]  Nalin Rastogi,et al.  Proposal for Standardization of Optimized Mycobacterial Interspersed Repetitive Unit-Variable-Number Tandem Repeat Typing of Mycobacterium tuberculosis , 2006, Journal of Clinical Microbiology.

[40]  Leen Rigouts,et al.  Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology , 2006, BMC Microbiology.

[41]  Stefan Niemann,et al.  Variable host-pathogen compatibility in Mycobacterium tuberculosis. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[42]  P. Small,et al.  Genomic Deletions Classify the Beijing/W Strains as a Distinct Genetic Lineage of Mycobacterium tuberculosis , 2005, Journal of Clinical Microbiology.

[43]  Christian V Forst,et al.  Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling. , 2004, Molecular biology of the cell.

[44]  W. Hardt,et al.  Lack of mismatch correction facilitates genome evolution in mycobacteria , 2004, Molecular microbiology.

[45]  Midori Kato-Maeda,et al.  Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[46]  A. Cataldi,et al.  A Fragment of 21 ORFs Around the Direct Repeat (DR) Region of Mycobacterium tuberculosis is Absent From the Other Sequenced Mycobacterial Genomes: Implications for the Evolution of the DR Region , 2004, Comparative and functional genomics.

[47]  A. Cataldi,et al.  A fragment of 21 ORFs around the direct repeat (DR) region of Mycobacterium tuberculosis is absent from the other sequenced mycobacterial genomes: implications for the evolution of the DR region: Short Communications , 2004 .

[48]  Christopher M. Sassetti,et al.  Genetic requirements for mycobacterial survival during infection , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  D. van Soolingen,et al.  Mutations in Putative Mutator Genes of Mycobacterium tuberculosis Strains of the W-Beijing Family , 2003, Emerging infectious diseases.

[50]  R M Warren,et al.  IS6110-Mediated Deletion Polymorphism in the Direct Repeat Region of Clinical Isolates of Mycobacterium tuberculosis , 2003, Journal of bacteriology.

[51]  E. Rubin,et al.  Genes required for mycobacterial growth defined by high density mutagenesis , 2003, Molecular microbiology.

[52]  Nalin Rastogi,et al.  Global Distribution of Mycobacterium tuberculosis Spoligotypes , 2002, Emerging infectious diseases.

[53]  Lewis Y. Geer,et al.  CDART: protein homology by domain architecture. , 2002, Genome research.

[54]  L. Schouls,et al.  Identification of genes that are associated with DNA repeats in prokaryotes , 2002, Molecular microbiology.

[55]  V. Schellenberger,et al.  Rapid Evolution of Novel Traits in Microorganisms , 2001, Applied and Environmental Microbiology.

[56]  N Rastogi,et al.  Use of Spoligotyping To Study the Evolution of the Direct Repeat Locus by IS6110 Transposition inMycobacterium tuberculosis , 2001, Journal of Clinical Microbiology.

[57]  N Rastogi,et al.  Spacer oligonucleotide typing of bacteria of the Mycobacterium tuberculosis complex: recommendations for standardised nomenclature. , 2001, The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.

[58]  Ruud Jansen,et al.  Genetic Variation and Evolutionary Origin of the Direct Repeat Locus of Mycobacterium tuberculosis Complex Bacteria , 2000, Journal of bacteriology.

[59]  B. Barrell,et al.  Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence , 1998, Nature.

[60]  N. Morrison,et al.  IS6110 Transposition and Evolutionary Scenario of the Direct Repeat Locus in a Group of Closely Related Mycobacterium tuberculosis Strains , 1998, Journal of bacteriology.

[61]  D van Soolingen,et al.  Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology , 1997, Journal of clinical microbiology.

[62]  R. Warren,et al.  Novel Cause of Tuberculosis in Meerkats , 2013 .

[63]  J. DiRuggiero,et al.  Microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus exposed to gamma irradiation , 2006, Extremophiles.

[64]  Barun Mathema,et al.  Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains. , 2002, Trends in microbiology.