Structures and distributions in morphology learning

One of the great challenges in linguistics and cognitive science is to understand the nature of the mental representation of language. The precise mechanisms of the mind are unknown, but can be modeled through observation and experimentation. By viewing the mind as a computational device that receives input (primary linguistic data) and produces output (the development of grammatical speech) during language acquisition, one can reason about what representations and algorithms must be internal to the learner. In this thesis, I investigate the acquisition of morphology. The principal challenges are how to learn a theory in the presence of sparse data, and in a manner that can provide explanations for the developmental processes in child language acquisition. The main idea underlying this work is that a consideration of the different aspects of language acquisition places strong constraints on cognitively plausible representations and algorithms that are internal to the learner. To develop a model of morphology acquisition, I pursue three lines of work: First, I formulate a cognitively-oriented computational framework for studying language acquisition that consists of four components: the linguistic representation, the statistical distribution of the input data, the observed behavior of the human learner, and the performance of the learning algorithm. All four components and their interactions are important for understanding language acquisition. Second, I examine the statistical distributions of morphology in naturally occurring corpora and discuss their implications for acquisition and theories of morphology. The Zipfian distribution of morphological inflections favors a rule-based model of morphology, where rules are learned one at a time by relating them to the morphological base. This provides an explanation of children's incremental acquisition of morphology. Third, to provide empirical support for this theory of acquisition, I implement unsupervised algorithms for the induction of morphology and lexical categories from text corpora. A rule-based model of morphology called the base-and-transforms model is learned, which consists of lexical categories, morphological base forms, and rules that convert base forms to other inflections. Morphological base forms play an important role in bootstrapping the acquisition of morphological relations, and simplify lexical category induction through distributional analysis.

[1]  Saso Dzeroski,et al.  Learning Multilingual Morphology with CLOG , 1998, ILP.

[2]  David Yarowsky,et al.  Minimally Supervised Induction of Grammatical Gender , 2003, HLT-NAACL.

[3]  Gerald J. Sussman,et al.  Sparse Representations for Fast, One-Shot Learning , 1997, AAAI/IAAI.

[4]  Alexander Clark,et al.  Combining Distributional and Morphological Information for Part of Speech Induction , 2003, EACL.

[5]  Nick Chater,et al.  A hybrid approach to the automatic learning of linguistic categories , 1991 .

[6]  S. Kapur,et al.  On the use of triggers in parameter setting , 1996 .

[7]  Adam Albright,et al.  The morphological basis of paradigm leveling , 2002 .

[8]  Bezalel Elan Dresher,et al.  Charting the Learning Path: Cues to Parameter Setting , 1999, Linguistic Inquiry.

[9]  George Kingsley Zipf,et al.  Human behavior and the principle of least effort , 1949 .

[10]  W. Dressler,et al.  Morphological typology and first language acquisition: some mutual challenges , 2003 .

[11]  Alexander Clark,et al.  Inducing Syntactic Categories by Context Distribution Clustering , 2000, CoNLL/LLL.

[12]  Charles D. Yang The Infinite Gift: How Children Learn and Unlearn the Languages of the World , 2006 .

[13]  Martin F. Porter,et al.  An algorithm for suffix stripping , 1997, Program.

[14]  Mark Johnson,et al.  Priors in Bayesian Learning of Phonological Rules , 2004, SIGMORPHON@ACL.

[15]  D. Slobin The Crosslinguistic Study of Language Acquisition , 1987 .

[16]  A. E. Albright,et al.  The identification of bases in morphological paradigms , 2002 .

[17]  Linda Wilbanks,et al.  IT Productivity = ?? , 2009, IT Prof..

[18]  Adam Albright,et al.  Explaining universal tendencies and language particulars in analogical change , 2006 .

[19]  Elissa L. Newport,et al.  Statistical Learning of Syntax: The Role of Transitional Probability , 2007 .

[20]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[21]  John Goldsmith,et al.  An algorithm for the unsupervised learning of morphology , 2006, Natural Language Engineering.

[22]  Kimmo Koskenniemi,et al.  A General Computational Model for Word-Form Recognition and Production , 1984 .

[23]  Suresh Manandhar,et al.  Unsupervised Learning of Word Segmentation Rules with Genetic Algorithms and Inductive Logic Programming , 2001, Machine Learning.

[24]  François Yvon,et al.  An Analogical Learner for Morphological Analysis , 2005, CoNLL.

[25]  Bruce Hayes,et al.  Modeling English Past Tense Intuitions with Minimal Generalization , 2002, SIGMORPHON.

[26]  H. Gleitman,et al.  The current status of the motherese hypothesis , 1984, Journal of Child Language.

[27]  Noam Chomsky Three Factors in Language Design , 2005, Linguistic Inquiry.

[28]  David Yarowsky,et al.  Minimally Supervised Morphological Analysis by Multimodal Alignment , 2000, ACL.

[29]  Alon Lavie,et al.  Unsupervised Induction of Natural Language Morphology Inflection Classes , 2004, SIGMORPHON@ACL.

[30]  Brian Everitt,et al.  Cluster analysis , 1974 .

[31]  Harald Hammarström,et al.  Poor Man's Stemming: Unsupervised Recognition of Same-Stem Words , 2006, AIRS.

[32]  Noam Chomsky,et al.  Lectures on Government and Binding , 1981 .

[33]  Thomas K. Landauer,et al.  How Much do People Remember? Some Estimates of the Quantity of Learned Information in Long-Term Memory , 1986, Cogn. Sci..

[34]  J. Tenenbaum,et al.  Poverty of the Stimulus? A Rational Approach , 2006 .

[35]  Shlomo Argamon,et al.  Efficient Unsupervised Recursive Word Segmentation Using Minimum Description Length , 2004, COLING.

[36]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[37]  Akira Ushioda,et al.  Hierarchical Clustering of Words , 1996, COLING.

[38]  Martin Porter,et al.  Snowball: A language for stemming algorithms , 2001 .

[39]  øöö Blockinø Knowledge-Free Induction of Morphology Using Latent Semantic Analysis , 2000 .

[40]  Zellig S. Harris,et al.  Papers in structural and transformational linguistics , 1951 .

[41]  Noam Chomsky,et al.  The Logical Structure of Linguistic Theory , 1975 .

[42]  Roger W. Brown,et al.  A First Language: The Early Stages , 1974 .

[43]  Joel D. Martin,et al.  Unsupervised Learning of Morphology for English and Inuktitut , 2003, NAACL.

[44]  L. Gerken,et al.  Infants can use distributional cues to form syntactic categories , 2005, Journal of Child Language.

[45]  W. Bruce Croft,et al.  Corpus-based stemming using cooccurrence of word variants , 1998, TOIS.

[46]  Walter Daelemans,et al.  Unsupervised Discovery of Phonological Categories through Supervised Learning of Morphological Rules , 1996, COLING.

[47]  Alexander Clark Memory-Based Learning of Morphology with Stochastic Transducers , 2002, ACL.

[48]  Ebru Arisoy,et al.  Unsupervised segmentation of words into morphemes - Challenge 2005, An Introduction and Evaluation Report , 2006 .

[49]  Joe Pater Minimal Violation and Phonological Development , 1997 .

[50]  Mitchell P. Marcus,et al.  A theory of syntactic recognition for natural language , 1979 .

[51]  Alon Lavie,et al.  ParaMor: Finding Paradigms across Morphology , 2008, CLEF.

[52]  Martin Kay,et al.  Regular Models of Phonological Rule Systems , 1994, CL.

[53]  David Lightfoot,et al.  Principles of diachronic syntax , 1979 .

[54]  Yu Hu,et al.  Using Morphology and Syntax Together in Unsupervised Learning , 2005 .

[55]  David A. Hull Stemming algorithms: a case study for detailed evaluation , 1996 .

[56]  Mathias Creutz,et al.  Morpheme Segmentation Gold Standards for Finnish and English , 2004 .

[57]  G. Marcus Negative evidence in language acquisition , 1993, Cognition.

[58]  Peter A. Flach,et al.  Morphology learning using tree of aligned suffix rules , 2007 .

[59]  Gaja Jarosz,et al.  Unsupervised Learning of Morphology Using a Novel Directed Search Algorithm: Taking the First Step , 2002, SIGMORPHON.

[60]  Bryan Jurish Hybrid Syntactic Category Induction , 2005 .

[61]  Chu-Ren Huang,et al.  The universality of simple distributional methods : Identifying syntactic categories in Mandarin Chinese , 1995 .

[62]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[63]  Richard Wicentowski Multilingual Noise-Robust Supervised Morphological Analysis using the WordFrame Model , 2004, SIGMORPHON@ACL.

[64]  David Yarowsky,et al.  Modeling and learning multilingual inflectional morphology in a minimally supervised framework , 2003 .

[65]  Lauri Karttunen,et al.  Finite State Morphology , 2003, CSLI Studies in Computational Linguistics.

[66]  Ian Cloete,et al.  Automatic Acquisition of Two-Level Morphological Rules , 1997, ANLP.

[67]  Nicola Ferro,et al.  A probabilistic model for stemmer generation , 2005, Inf. Process. Manag..

[68]  Morten H. Christiansen,et al.  The differential role of phonological and distributional cues in grammatical categorisation , 2005, Cognition.

[69]  P. Sopp Cluster analysis. , 1996, Veterinary immunology and immunopathology.

[70]  Dayne Freitag,et al.  Toward Unsupervised Whole-Corpus Tagging , 2004, COLING.

[71]  Gertjan van Noord FSA Utilities: A Toolbox to Manipulate Finite-State Automata , 1996, Workshop on Implementing Automata.

[72]  Charles D. Yang Universal Grammar, statistics or both? , 2004, Trends in Cognitive Sciences.

[73]  Mark C. Baker The Atoms of Language , 1987 .

[74]  Christopher D. Manning The segmentation problem in morphology learning , 1998, CoNLL.

[75]  Yu Hu,et al.  The SED heuristic for morpheme discovery: a look at Swahili , 2005 .

[76]  LAURI CARLSON 2 Inducing a Morphological Transducer from Inflectional Paradigms , 2005 .

[77]  Bambi B. Schieffelin,et al.  The acquisition of Kaluli. , 1985 .

[78]  J. Elman Distributed Representations, Simple Recurrent Networks, And Grammatical Structure , 1991 .

[79]  John A. Goldsmith,et al.  Unsupervised Learning of the Morphology of a Natural Language , 2001, CL.

[80]  S. Pinker,et al.  On language and connectionism: Analysis of a parallel distributed processing model of language acquisition , 1988, Cognition.

[81]  Noam Chomsky,et al.  Remarks on Nominalization , 2020, Nominalization.

[82]  Erin Conwell,et al.  Resolving Grammatical Category Ambiguity in Acquisition , 2007 .

[83]  Hinrich Schütze,et al.  Distributional Part-of-Speech Tagging , 1995, EACL.

[84]  Thomas L. Griffiths,et al.  Integrating Topics and Syntax , 2004, NIPS.

[85]  Alexander Clark,et al.  Learning Morphology with Pair Hidden Markov Models , 2001, ACL.

[86]  Raymond J. Mooney,et al.  Learning the past tense of English verbs using inductive logic programming , 1995, Learning for Natural Language Processing.

[87]  Nina Hyams,et al.  Aspects of root infinitives , 1998 .

[88]  Zellig S. Harris,et al.  From Phoneme to Morpheme , 1955 .

[89]  H. Gleitman,et al.  Mother, Id rather do it myself: Some effects and non-effects of maternal speech style , 1977 .

[90]  Alison Smizer Syntactic categorization in early language acquisition : formalizing the role of distributional analysis , 2007 .

[91]  John Goldsmith,et al.  Learning Inflectional Classes , 2006 .

[92]  Chris D. Paice Method for Evaluation of Stemming Algorithms Based on Error Counting , 1996, J. Am. Soc. Inf. Sci..

[93]  Dan Klein,et al.  Analyzing the Errors of Unsupervised Learning , 2008, ACL.

[94]  D. Roy Grounding words in perception and action: computational insights , 2005, Trends in Cognitive Sciences.

[95]  Pablo Gamallo,et al.  A Divide-and-Conquer Approach to Acquire Syntactic Categories , 2004, ICGI.

[96]  J. Berko The Child's Learning of English Morphology , 1958 .

[97]  Delphine Bernhard,et al.  Simple Morpheme Labelling in Unsupervised Morpheme Analysis , 2008, CLEF.

[98]  P. Stanley Peters,et al.  On the generative power of transformational grammars , 1973, Inf. Sci..

[99]  Maria Teresa Guasti,et al.  Language acquisition : the growth of grammar , 2002 .

[100]  Vera Demberg,et al.  A Language-Independent Unsupervised Model for Morphological Segmentation , 2007, ACL.

[101]  Derrick Higgins Unsupervised Learning of Bulgarian POS Tags , 2003 .

[102]  David Yarowsky,et al.  Unsupervised Word Sense Disambiguation Rivaling Supervised Methods , 1995, ACL.

[103]  Matthew G. Snover,et al.  A Bayesian Model for Morpheme and Paradigm Identification , 2001, ACL.

[104]  Lars Borin,et al.  What is a lexical representation? , 1985, NODALIDA.

[105]  D. Slobin Cognitive prerequisites for the development of grammar , 1973 .

[106]  Pieter W. Adriaans,et al.  The EMILE 4.1 Grammar Induction Toolbox , 2002, ICGI.

[107]  Alexander Clark,et al.  Unsupervised Language Acquisition: Theory and Practice , 2002, ArXiv.

[108]  Charles Yang,et al.  Word Segmentation: Quick but not Dirty , 2005 .

[109]  Stefan Bordag Unsupervised and Knowledge-free Morpheme Segmentation and Analysis , 2007, CLEF.

[110]  Marco Baroni,et al.  Unsupervised discovery of morphologically related words based on orthographic and semantic similarity , 2002, SIGMORPHON.

[111]  Mark Johnson,et al.  A Discovery Procedure for Certain Phonological Rules , 1984, ACL.

[112]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[113]  J. Stemberger,et al.  The Emergence of Faithfulness , 1999 .

[114]  Patrick Schone,et al.  Toward knowledge-free induction of machine-readable dictionaries , 2001 .

[115]  Dan Klein,et al.  Corpus-Based Induction of Syntactic Structure: Models of Dependency and Constituency , 2004, ACL.

[116]  Kenneth Church Morphoogicai Decomposition and Stress Assignment for Speech Synthesis , 1986, ACL.

[117]  Bart Cramer,et al.  Limitations of Current Grammar Induction Algorithms , 2007, ACL.

[118]  Pat Langley,et al.  Learning Context-Free Grammars with a Simplicity Bias , 2000, ECML.

[119]  Richard Sproat,et al.  Morphology and computation , 1992 .

[120]  J. Grinstead,et al.  Optional Infinitives in Child Spanish , 2007 .

[121]  Daniel Gildea,et al.  Learning Bias and Phonological-Rule Induction , 1996, CL.

[122]  Nick Chater,et al.  Distributional Information: A Powerful Cue for Acquiring Syntactic Categories , 1998, Cogn. Sci..

[123]  Mikko Kurimo,et al.  Overview of Morpho Challenge in CLEF 2007 , 2007, CLEF.

[124]  Klaus Wothke Machine Learing of Morphological Rules by Generalization and Analogy , 1986, COLING.

[125]  Bart de Boer,et al.  The Atoms of Language: The Mind's Hidden Rules of Grammar; Foundations of Language: Brain, Meaning, Grammar, Evolution , 2002, Artificial Life.

[126]  Mathias Creutz,et al.  Unsupervised Discovery of Morphemes , 2002, SIGMORPHON.

[127]  Anne-Michelle Tessier,et al.  Biases and Stages in Phonological Acquisition , 2008 .

[128]  Stephen F. Weiss,et al.  Word segmentation by letter successor varieties , 1974, Inf. Storage Retr..

[129]  Steven Pinker,et al.  Language learnability and language development , 1985 .

[130]  David M. Blei,et al.  Variational inference and learning for a unified model of syntax, semantics and morphology , 2006 .

[131]  Eytan Ruppin,et al.  Unsupervised learning of natural languages , 2006 .

[132]  Luigi Burzio,et al.  Sources of Paradigm Uniformity , 2004 .

[133]  Timothy Gambell,et al.  Statistics Learning and Universal Grammar: Modeling Word Segmentation , 2004 .

[134]  Elissa L. Newport,et al.  The distributional structure of grammatical categories in speech to young children , 2002, Cogn. Sci..

[135]  S. Pinker,et al.  The past and future of the past tense , 2002, Trends in Cognitive Sciences.

[136]  Dayne Freitag,et al.  Morphology Induction from Term Clusters , 2005, CoNLL.

[137]  John Goldsmtth TOWARDS A NEW EMPIRICISM , 2007 .

[138]  Thomas L. Griffiths,et al.  Adaptor Grammars: A Framework for Specifying Compositional Nonparametric Bayesian Models , 2006, NIPS.

[139]  M. McShane,et al.  Bootstrapping Morphological Analyzers by Combining Human Elicitation and Machine Learning , 2001, Computational Linguistics.

[140]  J. Grinstead,et al.  Case, inflection and subject licensing in child Catalan and Spanish , 2000, Journal of Child Language.

[141]  Mehryar Mohri,et al.  A Rational Design for a Weighted Finite-State Transducer Library , 1997, Workshop on Implementing Automata.

[142]  Noam Chomsky,et al.  The Sound Pattern of English , 1968 .

[143]  Markus Forsberg,et al.  Functional morphology , 2004, ICFP '04.

[144]  Sydney M. Lamb,et al.  On the mechanization of syntactic analysis , 1961, EARLYMT.

[145]  Gerald Gazdar,et al.  DATR: A Language for Lexical Knowledge Representation , 1996, CL.

[146]  James P. Blevins,et al.  Word-based morphology , 2006, Journal of Linguistics.

[147]  Hinrich Schütze,et al.  Part-of-Speech Induction From Scratch , 1993, ACL.

[148]  M. Goldsmith,et al.  Statistical Learning by 8-Month-Old Infants , 1996 .

[149]  Mark Johnson,et al.  Why Doesn’t EM Find Good HMM POS-Taggers? , 2007, EMNLP.

[150]  Dana Ron,et al.  A Markov model for the acquisition of morphological structure , 2003 .

[151]  Rémi Zajac Morpholog: Constrained and Supervised Learning of Morphology , 2001, CoNLL.

[152]  Christopher D. Manning,et al.  Probabilistic models of language processing and acquisition , 2006, Trends in Cognitive Sciences.

[153]  Robert L. Mercer,et al.  Class-Based n-gram Models of Natural Language , 1992, CL.

[154]  Christian Biemann,et al.  Unsupervised Part-of-Speech Tagging Employing Efficient Graph Clustering , 2006, ACL.

[155]  Dan Klein,et al.  Prototype-Driven Learning for Sequence Models , 2006, NAACL.

[156]  Zellig S. Harris,et al.  Distributional Structure , 1954 .

[157]  Menno van Zaanen ABL: Alignment-Based Learning , 2000, COLING.

[158]  Hervé Déjean Morphemes as Necessary Concept for Structures Discovery from Untagged Corpora , 1998, CoNLL.

[159]  P. Smolensky,et al.  Optimality Theory: Constraint Interaction in Generative Grammar , 2004 .

[160]  Margaret M. Fleck Lexicalized Phonotactic Word Segmentation , 2008, ACL.

[161]  K. Wexler Very early parameter setting and the unique checking constraint: a new explanation of the optional infinitive stage: a new explanation of the optional infinitive stage , 1998 .

[162]  James L. McClelland,et al.  Rules or connections in past-tense inflections: what does the evidence rule out? , 2002, Trends in Cognitive Sciences.

[163]  Mark C. Baker Lexical Categories: Verbs, Nouns and Adjectives , 2003 .

[164]  Raymond A. Molnar,et al.  "Generalize and Sift" as a Model of Inflection Acquisition , 2001 .

[165]  B. Schölkopf,et al.  Edinburgh Research Explorer Interpolating between types and tokens by estimating power-law generators , 2006 .

[166]  M. Labelle THE ACQUISITION OF GRAMMATICAL CATEGORIES: THE STATE OF THE ART , 2005 .

[167]  S. Varlokosta,et al.  Functional projections, markedness, and “root infinitives” in early child Greek , 1998 .

[168]  Ying Lin,et al.  Learning features and segments from waveforms : a statistical model of early phonological acquisition , 2005 .

[169]  H. Somers,et al.  On the Mechanization of Syntactic Analysis , 2003 .

[170]  B. MacWhinney The CHILDES project: tools for analyzing talk , 1992 .

[171]  Andrew R. Golding,et al.  A morphology component for language programs , 1985 .

[172]  R. Baayen,et al.  Shifting paradigms: gradient structure in morphology , 2005, Trends in Cognitive Sciences.

[173]  Samarth Keshava A Simpler , Intuitive Approach to Morpheme Induction , 2006 .

[174]  Charles D. Yang,et al.  Knowledge and learning in natural language , 2000 .

[175]  Vincent Ng,et al.  High-Performance, Language-Independent Morphological Segmentation , 2007, HLT-NAACL.

[176]  C. Douglas Johnson,et al.  Formal Aspects of Phonological Description , 1972 .

[177]  Charles Yang,et al.  Three factors in language variation , 2010 .

[178]  Joan L. Bybee,et al.  Regular morphology and the lexicon. , 1995 .

[179]  C. Ling,et al.  Answering the connectionist challenge: a symbolic model of learning the past tenses of English verbs , 1993, Cognition.

[180]  Chen Yu,et al.  The emergence of links between lexical acquisition and object categorization: a computational study , 2005, Connect. Sci..

[181]  Wentian Li,et al.  Random texts exhibit Zipf's-law-like word frequency distribution , 1992, IEEE Trans. Inf. Theory.

[182]  Vincent Ng,et al.  Unsupervised Part-of-Speech Acquisition for Resource-Scarce Languages , 2007, EMNLP-CoNLL.

[183]  Toben H. Mintz Frequent frames as a cue for grammatical categories in child directed speech , 2003, Cognition.

[184]  M. Halle,et al.  On Feature Spreading and the Representation of Place of Articulation , 2000, Linguistic Inquiry.

[185]  J. Elman,et al.  Learning and morphological change , 1995, Cognition.

[186]  Peter Grünwald,et al.  A minimum description length approach to grammar inference , 1995, Learning for Natural Language Processing.

[187]  Mitchell P. Marcus,et al.  Towards Unsupervised Extraction of Verb Paradigms from Large Corpora , 1998, VLC@COLING/ACL.

[188]  Mathias Creutz Unsupervised Segmentation of Words Using Prior Distributions of Morph Length and Frequency , 2003, ACL.

[189]  M. Raijmakers Rethinking innateness: A connectionist perspective on development. , 1997 .

[190]  K. Forster,et al.  Lexical storage and retrieval of prefixed words , 1975 .

[191]  Yehoshua Bar-Hillel,et al.  Language and information : selected essays on their theory and application , 1965 .

[192]  Dunja Mladenic,et al.  A Rule based Approach to Word Lemmatization , 2004 .

[193]  David C. Plaut,et al.  Are non-semantic morphological effects incompatible with a distributed connectionist approach to lexical processing? , 2000 .

[194]  Nick Chater,et al.  BOOTSTRAPPING SYNTACTIC CATEGORIES , 1992 .

[195]  Z. Harris From Morpheme to Utterance , 1946 .

[196]  Charles X. Ling,et al.  Learning the Past Tense of English Verbs: The Symbolic Pattern Associator vs. Connectionist Models , 1993, J. Artif. Intell. Res..

[197]  James L. McClelland,et al.  On learning the past-tenses of English verbs: implicit rules or parallel distributed processing , 1986 .

[198]  Hang Li,et al.  Word Clustering and Disambiguation Based on Co-occurrence Data , 1998, COLING.

[199]  Mathias Creutz,et al.  Induction of a Simple Morphology for Highly-Inflecting Languages , 2004, SIGMORPHON@ACL.

[200]  Daniel Jurafsky,et al.  Knowledge-Free Induction of Inflectional Morphologies , 2001, NAACL.

[201]  Noam Chomsky,et al.  वाक्यविन्यास का सैद्धान्तिक पक्ष = Aspects of the theory of syntax , 1965 .

[202]  Kimmo Koskenniemi,et al.  A General Computational Model for Word-Form Recognition and Production , 1984, ACL.

[203]  George N. Clements,et al.  The geometry of phonological features , 1985, Phonology Yearbook.