Self-Calibration from Image Triplets

We describe a method for determining affine and metric calibration of a camera with unchanging internal parameters undergoing planar motion. It is shown that affine calibration is recovered uniquely, and metric calibration up to a two fold ambiguity.

[1]  L. Gool,et al.  Affine reconstruction from perspective image pairs , 1993 .

[2]  Olivier D. Faugeras,et al.  What can be seen in three dimensions with an uncalibrated stereo rig , 1992, ECCV.

[3]  O. D. Faugeras,et al.  Camera Self-Calibration: Theory and Experiments , 1992, ECCV.

[4]  Quang-Tuan Luong Matrice fondamentale et autocalibration en vision par ordinateur , 1992 .

[5]  Michael Brady,et al.  Ground Plane Motion Camera Models , 1996, ECCV.

[6]  Luc Van Gool,et al.  Affine Reconstruction from Perspective Image Pairs Obtained by a Translating Camera , 1993, Applications of Invariance in Computer Vision.

[7]  O. Faugeras,et al.  Camera Self-Calibration from Video Sequences: the Kruppa Equations Revisited , 1996 .

[8]  Richard I. Hartley,et al.  A linear method for reconstruction from lines and points , 1995, Proceedings of IEEE International Conference on Computer Vision.

[9]  Thomas S. Huang,et al.  Theory of Reconstruction from Image Motion , 1992 .

[10]  O. Faugeras Stratification of three-dimensional vision: projective, affine, and metric representations , 1995 .

[11]  Rajiv Gupta,et al.  Stereo from uncalibrated cameras , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  J. G. Semple,et al.  Algebraic Projective Geometry , 1953 .

[13]  Amnon Shashua,et al.  Trilinearity in Visual Recognition by Alignment , 1994, ECCV.

[14]  Thierry Viéville,et al.  Canonic Representations for the Geometries of Multiple Projective Views , 1994, ECCV.