Analysis of multichannel narrow-band filters for image texture segmentation

A model for texture analysis and segmentation using multiple oriented channel filters is analyzed in the general framework. Several different arguments are applied leading to the conclusion that the two-dimensional Gabor filters possess strong optimality properties for this task. Properties of the multiple-channel segmentation approach are analyzed. In particular, perturbations of textures from an ideal model are found to have important effects on the segmentation that can usually be ameliorated by simply preceding the segmentation process by a logarithmic operation and using a low-pass postfilter prior to making region assignments. The difficult problems of space-variant textures and multiple component textures are also considered. Local spatial frequency estimation approaches are suggested that use the responses as constraints in estimating the locally emergent texture frequencies. Complex texture aggregates containing multiple shared frequency components can be analyzed if the textures are distinct and few in number. >

[1]  A. Papoulis,et al.  The Fourier Integral and Its Applications , 1963 .

[2]  Peter J. Burt,et al.  Fast algorithms for estimating local image properties , 1982, Comput. Graph. Image Process..

[3]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[4]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[5]  Andrew P. Witkin,et al.  Analyzing Oriented Patterns , 1985, IJCAI.

[6]  John G. Daugman,et al.  Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression , 1988, IEEE Trans. Acoust. Speech Signal Process..

[7]  Andrew P. Witkin,et al.  Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Mj Martin Bastiaans A Sampling Theorem For The Complex Spectrogram, And Gabor's Expansion Of A Signal In Gaussian Elementary Signals , 1981 .

[9]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[10]  Alan C. Bovik,et al.  Numerical Analysis of Image Patterns , 1989, Other Conferences.

[11]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Steven W. Zucker,et al.  Early orientation selection: Tangent fields and the dimensionality of their support , 1985, Comput. Vis. Graph. Image Process..

[14]  Demetri Terzopoulos,et al.  Image Analysis Using Multigrid Relaxation Methods , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Hans Knutsson,et al.  Texture Analysis Using Two-Dimensional Quadrature Filters , 1983 .

[16]  K. Shanmugam,et al.  Optimum edge detection filter. , 1977, Applied optics.

[17]  Andrew P. Witkin,et al.  Recovering Surface Shape and Orientation from Texture , 1981, Artif. Intell..

[18]  W. Lunscher,et al.  Optimal Edge Detector Design I: Parameter Selection and Noise Effects , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Alan L. Yuille,et al.  Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  R. Wilson,et al.  Finite Prolate Spheroidal Sequences and their Applications II: Image Feature Description and Segmentation , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  David J. Heeger,et al.  Optical flow from spatialtemporal filters , 1987 .

[23]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Anil K. Jain,et al.  A spatial filtering approach to texture analysis , 1985, Pattern Recognit. Lett..

[25]  David J. Heeger,et al.  Optical flow using spatiotemporal filters , 2004, International Journal of Computer Vision.

[26]  Wilson S. Geisler,et al.  COMPUTATIONAL TEXTURE ANALYSIS USING LOCALIZED SPATIAL FILTERING. , 1987 .

[27]  Alan C. Bovik,et al.  TEXTURE DISCRIMINATION USING A MODEL OF VISUAL CORTEX. , 1986 .

[28]  Yehoshua Y. Zeevi,et al.  The Generalized Gabor Scheme of Image Representation in Biological and Machine Vision , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  A. Perry,et al.  Segmentation of textured images , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[30]  Martin D. Levine,et al.  Vision in Man and Machine , 1985 .

[31]  Roland Wilson,et al.  The Uncertainty Principle in Image Processing , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Alan C. Bovik,et al.  Channel interactions in visible pattern analysis , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[33]  Berthold K. P. Horn Robot vision , 1986, MIT electrical engineering and computer science series.

[34]  K. Laws Textured Image Segmentation , 1980 .

[35]  M. R. Turner,et al.  Texture discrimination by Gabor functions , 1986, Biological Cybernetics.

[36]  L. Glass Moiré Effect from Random Dots , 1969, Nature.

[37]  Alex Pentland,et al.  Shading into Texture , 1984, Artif. Intell..

[38]  Mj Martin Bastiaans Gabor's signal expansion and degrees of freedom of a signal , 1982 .

[39]  Dennis Gabor,et al.  Theory of communication , 1946 .

[40]  Martin J. Bastiaans,et al.  Sampling Theorem For The Complex Spectrogram, And Gabor's Expansion Of A Signal In Gaussian Elementary Signals , 1980, Other Conferences.

[41]  Jr. Thomas G. Stockham,et al.  Image processing in the context of a visual model , 1972 .

[42]  Tomaso A. Poggio,et al.  On Edge Detection , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.