Automatic Detection of the Updating Object by Areal Feature Matching Based on Shape Similarity

In this paper, we proposed a method for automatic detection of a updating object from spatial data sets of different scale and updating cycle by using areal feature matching based on shape similarity. For this, we defined a updating object by analysing matching relationships between two different spatial data sets. Next, we firstly eliminated systematic errors in different scale by using affine transformation. Secondly, if any object is overlaid with several areal features of other data sets, we changed several areal features into a single areal feature. Finally, we detected the updating objects by applying areal feature matching based on shape similarity into the changed spatial data sets. After applying the proposed method into digital topographic map and a base map of Korean Address Information System in South Korea, we confirmed that F-measure is highly 0.958 in a statistical evaluation and that significant updating objects are detected from a visual evaluation.