A Naive Algorithm for Feedback Vertex Set

Given a graph on $n$ vertices and an integer $k$, the feedback vertex set problem asks for the deletion of at most $k$ vertices to make the graph acyclic. We show that a greedy branching algorithm, which always branches on an undecided vertex with the largest degree, runs in single-exponential time, i.e., $O(c^k\cdot n^2)$ for some constant $c$.

[1]  Saket Saurabh,et al.  Faster Fixed Parameter Tractable Algorithms for Undirected Feedback Vertex Set , 2002, ISAAC.

[2]  Jonathan L. Gross,et al.  Finding a maximum-genus graph imbedding , 1988, JACM.

[3]  Kurt Mehlhorn,et al.  Data Structures and Algorithms 2: Graph Algorithms and NP-Completeness , 1984, EATCS Monographs on Theoretical Computer Science.

[4]  Geevarghese Philip,et al.  A single-exponential FPT algorithm for the K4-minor cover problem , 2015, J. Comput. Syst. Sci..

[5]  Marcin Pilipczuk,et al.  Faster deterministic Feedback Vertex Set , 2013, Inf. Process. Lett..

[6]  Fedor V. Fomin,et al.  Planar F-Deletion: Approximation and Optimal FPT Algorithms , 2012, ArXiv.

[7]  Christophe Paul,et al.  Linear Kernels and Single-Exponential Algorithms Via Protrusion Decompositions , 2012, ICALP.

[8]  Rina Dechter,et al.  Exploiting graph cutsets for sampling-based approximations in bayesian networks , 2006 .

[9]  John M. Lewis,et al.  The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..

[10]  Toshihiro Fujito,et al.  A Note on Approximation of the Vertex Cover and Feedback Vertex Set Problems - Unified Approach , 1996, Inf. Process. Lett..

[11]  Reuven Bar-Yehuda,et al.  Randomized Algorithms for the Loop Cutset Problem , 2000, J. Artif. Intell. Res..

[12]  Eugene C. Freuder A Sufficient Condition for Backtrack-Free Search , 1982, JACM.

[13]  David P. Williamson,et al.  A primal-dual interpretation of two 2-approximation algorithms for the feedback vertex set problem in undirected graphs , 1998, Oper. Res. Lett..

[14]  Stéphan Thomassé,et al.  A 4k2 kernel for feedback vertex set , 2010, TALG.

[15]  Piotr Berman,et al.  A 2-Approximation Algorithm for the Undirected Feedback Vertex Set Problem , 1999, SIAM J. Discret. Math..

[16]  P. Erd Os,et al.  On the maximal number of disjoint circuits of a graph , 2022, Publicationes Mathematicae Debrecen.

[17]  Yoji Kajitani,et al.  On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three , 1988, Discret. Math..

[18]  Rina Dechter,et al.  Network-based heuristics for constraint satisfaction problems , 1988 .

[19]  Jianer Chen,et al.  On Feedback Vertex Set: New Measure and New Structures , 2010, Algorithmica.

[20]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[21]  Michael R. Fellows,et al.  Nonconstructive tools for proving polynomial-time decidability , 1988, JACM.

[22]  Leizhen Cai,et al.  Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties , 1996, Inf. Process. Lett..