Light forces the pace: optical manipulation for biophotonics.

The biomedical sciences have benefited immensely from photonics technologies in the last 50 years. This includes the application of minute forces that enable the trapping and manipulation of cells and single molecules. In terms of the area of biophotonics, optical manipulation has made a seminal contribution to our understanding of the dynamics of single molecules and the microrheology of cells. Here we present a review of optical manipulation, emphasizing its impact on the areas of single-molecule studies and single-cell biology, and indicating some of the key experiments in the fields.

[1]  Peter Lebedew,et al.  Untersuchungen über die Druckkräfte des Lichtes , 1901 .

[2]  D. Normanno,et al.  Exploring molecular motors and switches at the single‐molecule level , 2004, Microscopy research and technique.

[3]  David J Stevenson,et al.  Enhanced operation of femtosecond lasers and applications in cell transfection , 2008, Journal of biophotonics.

[4]  Stefan Schinkinger,et al.  The regulatory role of cell mechanics for migration of differentiating myeloid cells , 2009, Proceedings of the National Academy of Sciences.

[5]  T. Reese,et al.  Dynein is the motor for retrograde axonal transport of organelles. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Kazuhiko Kinosita,et al.  Direct observation of the rotation of F1-ATPase , 1997, Nature.

[7]  M. Neil,et al.  High-speed high-resolution imaging of intercellular immune synapses using optical tweezers. , 2008, Biophysical journal.

[8]  Chwee Teck Lim,et al.  Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. , 2005, Acta biomaterialia.

[9]  Sangeeta N. Bhatia,et al.  The European charter for counteracting obesity: A late but important step towards action. Observations on the WHO-Europe ministerial conference, Istanbul, November 15–17, 2006 , 2007, The international journal of behavioral nutrition and physical activity.

[10]  Cecile O. Mejean,et al.  Cell stimulation with optically manipulated microsources , 2009, Nature Methods.

[11]  Yong-qing Li,et al.  Near-infrared Raman spectroscopy of single optically trapped biological cells. , 2002, Optics letters.

[12]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[13]  Falk Wottawah,et al.  Oral cancer diagnosis by mechanical phenotyping. , 2009, Cancer research.

[14]  P. Mitra,et al.  Fluctuation analysis of kinesin movement. , 1995, Biophysical journal.

[15]  Giovanni Volpe,et al.  Raman imaging of floating cells. , 2005, Optics express.

[16]  D. Chiu Micro- and nano-scale chemical analysis of individual sub-cellular compartments , 2003 .

[17]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[18]  Pavel Zemánek,et al.  Cellular and colloidal separation using optical forces. , 2007, Methods in cell biology.

[19]  L. Goldstein,et al.  Bead movement by single kinesin molecules studied with optical tweezers , 1990, Nature.

[20]  T. Perkins,et al.  Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. , 2006, Optics letters.

[21]  David Keller,et al.  Single-molecule studies of the effect of template tension on T7 DNA polymerase activity , 2000, Nature.

[22]  T. Steitz,et al.  Structural basis for initiation of transcription from an RNA polymerase–promoter complex , 1999, Nature.

[23]  Steven M Block,et al.  Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. , 2007, Biophysical journal.

[24]  Yunlong Sheng,et al.  One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells. , 2008, Optics express.

[25]  P. Matsudaira,et al.  Laser-guided assembly of heterotypic three-dimensional living cell microarrays. , 2006, Biophysical journal.

[26]  S. Monajembashi,et al.  Optical tweezers for confocal microscopy , 2000 .

[27]  S. Reihani,et al.  Optimized optical trapping of gold nanoparticles. , 2010, Optics express.

[28]  Mattias Goksör,et al.  A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells. , 2005, Lab on a chip.

[29]  H. Sussner,et al.  Resonance raman scattering on the haem group of oxy- and deoxyhaemoglobin. , 1972, Journal of molecular biology.

[30]  Mattias Goksör,et al.  Automated focusing of nuclei for time lapse experiments on single cells using holographic optical tweezers. , 2009, Optics express.

[31]  J. P. Barton,et al.  Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam , 1989 .

[32]  D. Chiu,et al.  Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. , 2005, Analytical chemistry.

[33]  Yu-Chong Tai,et al.  Biocomplatible parylene neurocages , 2005, IEEE Engineering in Medicine and Biology Magazine.

[34]  Matthew J Lang,et al.  Interlaced optical force-fluorescence measurements for single molecule biophysics. , 2006, Biophysical journal.

[35]  Rod Balhorn,et al.  Processive translocation and DNA unwinding by individual RecBCD enzyme molecules , 2001, Nature.

[36]  K. T. Gahagan,et al.  Optical vortex trapping of particles , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[37]  Steven M Block,et al.  Forward and reverse motion of single RecBCD molecules on DNA. , 2004, Biophysical journal.

[38]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[39]  David A. Sivak,et al.  Controlling DNA capture and propagation through artificial nanopores. , 2007, Nano letters.

[40]  Alexander Rohrbach,et al.  Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory. , 2005, Physical review letters.

[41]  K. Greulich,et al.  Application of laser optical tweezers in immunology and molecular genetics. , 1991, Cytometry.

[42]  G. Wuite,et al.  How DNA coiling enhances target localization by proteins , 2008, Proceedings of the National Academy of Sciences.

[43]  S. Stenholm,et al.  Laser cooling and trapping , 1988 .

[44]  M. Nieto-Vesperinas,et al.  Time-averaged total force on a dipolar sphere in an electromagnetic field. , 2000, Optics letters.

[45]  Amber L. Wells,et al.  Myosin VI is a processive motor with a large step size , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Kishan Dholakia,et al.  Passive optical separation within a 'nondiffracting' light beam. , 2007, Journal of biomedical optics.

[47]  M. Prentiss,et al.  Demonstration of a fiber-optical light-force trap. , 1993, Optics letters.

[48]  J. Longwell,et al.  Photophoresis of irradiated spheres: absorption centers , 1985 .

[49]  Yunlong Sheng,et al.  Local scattering stress distribution on surface of a spherical cell in optical stretcher. , 2006, Optics express.

[50]  Wolfgang Singer,et al.  Self-organized array of regularly spaced microbeads in a fiber-optical trap , 2003 .

[51]  Elinore M Mercer,et al.  Microfluidic sorting of mammalian cells by optical force switching , 2005, Nature Biotechnology.

[52]  S. Lane,et al.  Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy. , 2008, Analytical chemistry.

[53]  D. Odde,et al.  Laser-guided direct writing of living cells. , 2000, Biotechnology and bioengineering.

[54]  T. Nyström,et al.  A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes. , 2007, Lab on a chip.

[55]  Eric Mazur,et al.  Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. , 2006, Biophysical journal.

[56]  今坂藤太,et al.  光色谱法(Optical Chromatography) , 1995 .

[57]  Thomas T. Perkins,et al.  Optical traps for single molecule biophysics: a primer , 2009 .

[58]  S. Mohanty,et al.  He–Ne laser (632.8 nm) pre‐irradiation gives protection against DNA damage induced by a near‐infrared trapping beam , 2009, Journal of biophotonics.

[59]  J. Burns,et al.  Single-molecule mechanics of heavy meromyosin and S1 interacting with rabbit or Drosophila actins using optical tweezers. , 1995, Biophysical journal.

[60]  M W Berns,et al.  Laser induced cell fusion in combination with optical tweezers: the laser cell fusion trap. , 1991, Cytometry.

[61]  Christoph F. Schmidt,et al.  Direct observation of kinesin stepping by optical trapping interferometry , 1993, Nature.

[62]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[63]  T. Yanagida,et al.  Kinetics of force generation by single kinesin molecules activated by laser photolysis of caged ATP. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[64]  K Bergman,et al.  Characterization of photodamage to Escherichia coli in optical traps. , 1999, Biophysical journal.

[65]  M W Berns,et al.  Laser scissors and tweezers. , 1998, Scientific American.

[66]  Juergen Popp,et al.  Raman and Fluorescence Spectra of Single Optically Trapped Microdroplets in Emulsions , 1994 .

[67]  Tomáš Čižmár,et al.  Automated laser guidance of neuronal growth cones using a spatial light modulator , 2009, Journal of biophotonics.

[68]  Yiqiong Zhao,et al.  Using polarization-shaped optical vortex traps for single-cell nanosurgery. , 2007, Nano letters.

[69]  Cees Dekker,et al.  Direct force measurements on DNA in a solid-state nanopore , 2006 .

[70]  Arthur Ashkin,et al.  Stability of optical levitation by radiation pressure , 1974 .

[71]  Steven M. Block,et al.  Transcription Against an Applied Force , 1995, Science.

[72]  Y. Toyoshima,et al.  Processive movement of single 22S dynein molecules occurs only at low ATP concentrations. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Lene B. Oddershede,et al.  Quantification of droplet deformation by electromagnetic trapping , 2009 .

[74]  Woei Ming Lee,et al.  Optical Separation of Cells on Potential Energy Landscapes: Enhancement With Dielectric Tagging , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[75]  Steven M Block,et al.  Resource Letter: LBOT-1: Laser-based optical tweezers. , 2003, American journal of physics.

[76]  Y. Nahmias,et al.  Laser-guided direct writing for three-dimensional tissue engineering. , 2005, Biotechnology and bioengineering.

[77]  D. Anselmetti,et al.  Single beam optical tweezers setup with backscattered light detection for three-dimensional measurements on DNA and nanopores. , 2008, The Review of scientific instruments.

[78]  Carlos Bustamante,et al.  Direct Observation of the Three-State Folding of a Single Protein Molecule , 2005, Science.

[79]  Kun Chen,et al.  Sensitivity map of laser tweezers Raman spectroscopy for single-cell analysis of colorectal cancer. , 2007, Journal of biomedical optics.

[80]  L. Locascio,et al.  Optical Manipulation and Fusion of Liposomes as Microreactors , 2003 .

[81]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[82]  Kishan Dholakia,et al.  Optical manipulation of nanoparticles: a review , 2008 .

[83]  Steven M. Block,et al.  Force and velocity measured for single kinesin molecules , 1994, Cell.

[84]  J. Käs,et al.  The optical stretcher: a novel laser tool to micromanipulate cells. , 2001, Biophysical journal.

[85]  M. Berns,et al.  Wavelength dependence of cell cloning efficiency after optical trapping. , 1996, Biophysical journal.

[86]  R. Zare,et al.  Probing single secretory vesicles with capillary electrophoresis. , 1998, Science.

[87]  M. Skurnik,et al.  Biotechnological challenges of phage therapy , 2007, Biotechnology Letters.

[88]  Irving L. Weissman,et al.  Normal and leukemic hematopoiesis: Are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[89]  Russell J. Stewart,et al.  Working strokes by single molecules of the kinesin-related microtubule motor ncd , 2000, Nature Cell Biology.

[90]  Jerome Pine,et al.  Moving Live Dissociated Neurons With an Optical Tweezer , 2009, IEEE Transactions on Biomedical Engineering.

[91]  Francisco Ortega,et al.  Microrheology of Complex Fluids , 2011 .

[92]  Jörg Baumgartl,et al.  Optical redistribution of microparticles and cells between microwells. , 2009, Lab on a chip.

[93]  C. Martin,et al.  Evidence for DNA bending at the T7 RNA polymerase promoter. , 2000, Journal of molecular biology.

[94]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[95]  C. Montemagno,et al.  Translocation of double stranded DNA through membrane adapted phi29 motor protein nanopore , 2009, Nature nanotechnology.

[96]  J. Gelles,et al.  χ-Sequence recognition and DNA translocation by single RecBCD helicase/nuclease molecules , 2001, Nature.

[97]  D. Grier A revolution in optical manipulation , 2003, Nature.

[98]  Jing Wang,et al.  A comparative study of living cell micromechanical properties by oscillatory optical tweezers. , 2008, Optics express.

[99]  A. Ashkin,et al.  Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. , 1992, Biophysical journal.

[100]  S. Tans,et al.  The bacteriophage straight phi29 portal motor can package DNA against a large internal force. , 2001, Nature.

[101]  G J Streekstra,et al.  A new method to study shape recovery of red blood cells using multiple optical trapping. , 1995, Biophysical journal.

[102]  Kishan Dholakia,et al.  Optical Trapping Takes Shape: The Use of Structured Light Fields , 2008 .

[103]  David L. Andrews,et al.  Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces , 2008 .

[104]  H. Flyvbjerg,et al.  Power spectrum analysis for optical tweezers , 2004 .

[105]  K. Schütze,et al.  Cut out or poke in--the key to the world of single genes: laser micromanipulation as a valuable tool on the look-out for the origin of disease. , 1997, Genetic analysis : biomolecular engineering.

[106]  Julia N. Kaiser,et al.  Microfluidic-based cell sorting of Francisella tularensis infected macrophages using optical forces. , 2008, Analytical chemistry.

[107]  Ove Axner,et al.  Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence. , 2002, Biophysical journal.

[108]  Mattias Goksör,et al.  Optical manipulation in combination with multiphoton microscopy for single-cell studies. , 2004, Applied optics.

[109]  Christian T. A. Brown,et al.  Targeted optical injection of gold nanoparticles into single mammalian cells , 2009, Journal of biophotonics.

[110]  Hiroshi Masuhara,et al.  Optical trapping of a metal particle and a water droplet by a scanning laser beam , 1992 .

[111]  C. Bustamante,et al.  Ten years of tension: single-molecule DNA mechanics , 2003, Nature.

[112]  Jonathan V. Sweedler,et al.  Measuring the peptides in individual organelles with mass spectrometry , 2000, Nature Biotechnology.

[113]  M W Berns,et al.  Directed movement of chromosome arms and fragments in mitotic newt lung cells using optical scissors and optical tweezers. , 1994, Experimental cell research.

[114]  Mark J. Schnitzer,et al.  Kinesin hydrolyses one ATP per 8-nm step , 1997, Nature.

[115]  Kishan Dholakia,et al.  Optical micromanipulation. , 2008, Chemical Society reviews.

[116]  R. Kaufman,et al.  The mammalian unfolded protein response. , 2003, Annual review of biochemistry.

[117]  Stefan Schinkinger,et al.  Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. , 2005, Biophysical journal.

[118]  R. Simmons,et al.  Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study. , 1999, Biophysical journal.

[119]  Rosalba Saija,et al.  Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres. , 2009, Optics express.

[120]  Michael P. Sheetz,et al.  Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro , 1985, Cell.

[121]  Michelle D. Wang,et al.  Single-Molecule Studies Reveal Dynamics of DNA Unwinding by the Ring-Shaped T7 Helicase , 2007, Cell.

[122]  Cees Dekker,et al.  Optical tweezers for force measurements on DNA in nanopores , 2006 .

[123]  D V Petrov,et al.  Raman spectroscopy of optically trapped particles , 2007 .

[124]  Kimihide Hayakawa,et al.  Actin stress fibers transmit and focus force to activate mechanosensitive channels , 2008, Journal of Cell Science.

[125]  Visualization of an immunological reaction between single antigen and antibody molecules by optical chromatography , 2000 .

[126]  Bingyun Sun,et al.  Synthesis, loading, and application of individual nanocapsules for probing single-cell signaling. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[127]  Kishan Dholakia,et al.  Beth's experiment using optical tweezers , 2001 .

[128]  L. Oddershede,et al.  Optical Tweezers Cause Physiological Damage to Escherichia coli and Listeria Bacteria , 2008, Applied and Environmental Microbiology.

[129]  Piero R Bianco,et al.  Direct visualization of RecBCD movement reveals cotranslocation of the RecD motor after chi recognition. , 2005, Molecular cell.

[130]  Alexander Welle,et al.  Photo-chemically patterned polymer surfaces for controlled PC-12 adhesion and neurite guidance , 2005, Journal of Neuroscience Methods.

[131]  M. Grant,et al.  Cryopreservation of rat hepatocyte monolayers: cell viability and cytochrome P450 content in post-thaw cultures. , 2002, Toxicology in vitro : an international journal published in association with BIBRA.

[132]  Rachel Millin,et al.  Tension-dependent DNA cleavage by restriction endonucleases: two-site enzymes are "switched off" at low force. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[133]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[134]  Jan Greve,et al.  Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers , 2001, Nature Structural Biology.

[135]  Toshio Yanagida,et al.  Dynein arms are oscillating force generators , 1998, Nature.

[136]  W. Sale,et al.  The 9 + 2 Axoneme Anchors Multiple Inner Arm Dyneins and a Network of Kinases and Phosphatases That Control Motility , 2000, The Journal of cell biology.

[137]  J. Spudich,et al.  Single myosin molecule mechanics: piconewton forces and nanometre steps , 1994, Nature.

[138]  Kishan Dholakia,et al.  Light-induced cell separation in a tailored optical landscape , 2005 .

[139]  Thomas R Huser,et al.  Raman spectroscopy and microscopy of individual cells and cellular components , 2008 .

[140]  Xiaoling Peng,et al.  The combination of optical tweezers and microwell array for cells physical manipulation and localization in microfluidic device , 2007, Biomedical microdevices.

[141]  Steven B. Smith,et al.  Ten years of tension: single-molecule DNA , 2003 .

[142]  J Scheef,et al.  Laser micromanipulators for biotechnology and genome research. , 1994, Journal of biotechnology.

[143]  D. J. Stevenson,et al.  Optically guided neuronal growth at near-infrared wavelengths , 2006, SPIE Optics + Photonics.

[144]  M Mazilu,et al.  Dual beam fibre trap for Raman micro-spectroscopy of single cells. , 2006, Optics express.

[145]  J. Lichtenberger,et al.  Micromanipulation of retinal neurons by optical tweezers. , 1998, Molecular vision.

[146]  Michelle D. Wang,et al.  Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[147]  M Mazilu,et al.  Guided neuronal growth using optical line traps. , 2008, Optics express.

[148]  J. P. Barton,et al.  Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination. , 1995, Applied optics.

[149]  Kerstin Ramser,et al.  Optical manipulation for single‐cell studies , 2010, Journal of biophotonics.

[150]  Sangeeta N Bhatia,et al.  Exploring interactions between rat hepatocytes and nonparenchymal cells using gene expression profiling , 2004, Hepatology.

[151]  J. Scholey,et al.  Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos , 1999, Nature Cell Biology.

[152]  Kishan Dholakia,et al.  Single cell optical transfection , 2010, Journal of The Royal Society Interface.

[153]  Polly M Fordyce,et al.  Simultaneous, coincident optical trapping and single-molecule fluorescence , 2004, Nature Methods.

[154]  Carlos Bustamante,et al.  Recent advances in optical tweezers. , 2008, Annual review of biochemistry.

[155]  Carlos Bustamante,et al.  Supplemental data for : The Bacteriophage ø 29 Portal Motor can Package DNA Against a Large Internal Force , 2001 .

[156]  R. Templer,et al.  Spatially selective sampling of single cells using optically trapped fusogenic emulsion droplets: a new single-cell proteomic tool , 2008, Journal of The Royal Society Interface.

[157]  K. Neuman,et al.  Optical trapping. , 2004, The Review of scientific instruments.

[158]  Alex Henderson,et al.  Classification of fixed urological cells using Raman tweezers , 2009, Journal of biophotonics.

[159]  Hong Liang,et al.  Controlled synthesis of titanium nanochains using a template , 2009 .

[160]  Menghong Sun,et al.  Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells. , 2006, Optics letters.

[161]  Peter Gardner,et al.  Raman tweezers and their application to the study of singly trapped eukaryotic cells. , 2009, Integrative biology : quantitative biosciences from nano to macro.

[162]  O Orwar,et al.  Microfluidic device for combinatorial fusion of liposomes and cells. , 2001, Analytical chemistry.

[163]  Samara L. Reck-Peterson,et al.  Force-Induced Bidirectional Stepping of Cytoplasmic Dynein , 2007, Cell.

[164]  Bruce T. Draine,et al.  The discrete-dipole approximation and its application to interstellar graphite grains , 1988 .

[165]  Kuo-Kang Liu,et al.  Optical tweezers for single cells , 2008, Journal of The Royal Society Interface.

[166]  L. Oddershede,et al.  Expanding the optical trapping range of gold nanoparticles. , 2005, Nano letters.

[167]  W. Phillips Nobel Lecture: Laser cooling and trapping of neutral atoms , 1998 .

[168]  Victor Guallar,et al.  Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers. , 2009, Biophysical journal.

[169]  Mara Prentiss,et al.  Inexpensive optical tweezers for undergraduate laboratories , 1999 .

[170]  J. Chen,et al.  FDTD approach to optical forces of tightly focused vector beams on metal particles. , 2009, Optics express.

[171]  David McGloin,et al.  Holographic and single beam optical manipulation of hyphal growth in filamentous fungi , 2007 .

[172]  Yael Roichman,et al.  Holographic optical trapping. , 2006, Applied optics.

[173]  Alex Terray,et al.  Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis. , 2006, Analytical chemistry.

[174]  T. Yanagida,et al.  Single-molecule analysis of the actomyosin motor using nano-manipulation. , 1994, Biochemical and biophysical research communications.

[175]  T Kaneta,et al.  Application of optical chromatography to immunoassay. , 1997, Analytical chemistry.

[176]  W. Greenleaf,et al.  Direct observation of base-pair stepping by RNA polymerase , 2005, Nature.

[177]  R. T. Tregear,et al.  Movement and force produced by a single myosin head , 1995, Nature.

[178]  Benjamin C. Jantzen,et al.  Probing protein-DNA interactions by unzipping a single DNA double helix. , 2002, Biophysical journal.

[179]  Yong-qing Li,et al.  Raman sorting and identification of single living micro-organisms with optical tweezers. , 2005, Optics letters.

[180]  Miles J. Padgett,et al.  Lights, action: Optical tweezers , 2002 .

[181]  K. Jain,et al.  Applications of nanobiotechnology in clinical diagnostics. , 2007, Clinical chemistry.

[182]  Pavel Zemánek,et al.  Light at work: The use of optical forces for particle manipulation, sorting, and analysis , 2008, Electrophoresis.

[183]  C. Anfinsen,et al.  The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[184]  Giuseppe Pesce,et al.  Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by Raman Tweezers. , 2008, Optics express.

[185]  G. Loew,et al.  Theoretical study of model compound I complexes of horseradish peroxidase and catalase. , 1995, Biophysical journal.

[186]  Kishan Dholakia,et al.  Light beats the spread: “non‐diffracting” beams , 2010 .

[187]  Steven M. Block,et al.  Optical trapping of metallic Rayleigh particles. , 1994, Optics letters.

[188]  M. Fulwyler,et al.  Electronic Separation of Biological Cells by Volume , 1965, Science.

[189]  Ignacio Tinoco,et al.  Following translation by single ribosomes one codon at a time , 2008, Nature.

[190]  Kishan Dholakia,et al.  Construction and calibration of an optical trap on a fluorescence optical microscope , 2007, Nature Protocols.

[191]  Bingyun Sun,et al.  Spatially and temporally resolved delivery of stimuli to single cells. , 2003, Journal of the American Chemical Society.

[192]  J. Käs,et al.  Guiding neuronal growth with light , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[193]  Derek N. Fuller,et al.  Portal motor velocity and internal force resisting viral DNA packaging in bacteriophage phi29. , 2008, Biophysical journal.

[194]  S. Block,et al.  Kinesin: What Gives? , 1998, Cell.

[195]  Anita Sellstedt,et al.  Laser-based micromanipulation for separation and identification of individual Frankia vesicles. , 2003, FEMS microbiology letters.

[196]  T. Karu Mitochondrial Signaling in Mammalian Cells Activated by Red and Near‐IR Radiation , 2008, Photochemistry and photobiology.

[197]  Serge Monneret,et al.  Combining fluidic reservoirs and optical tweezers to control beads/living cells contacts , 2007 .

[198]  Alexander Rohrbach,et al.  Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations. , 2002, Applied optics.

[199]  Peter John Rodrigo,et al.  Interactive optical trapping shows that confinement is a determinant of growth in a mixed yeast culture. , 2005, FEMS microbiology letters.

[200]  Michelle D. Wang,et al.  Force and velocity measured for single molecules of RNA polymerase. , 1998, Science.

[201]  C. Holt,et al.  Apoptotic Pathway and MAPKs Differentially Regulate Chemotropic Responses of Retinal Growth Cones , 2003, Neuron.