Diagnostics in Waldenström’s macroglobulinemia: a consensus statement of the European Consortium for Waldenström’s Macroglobulinemia

[1]  M. Kersten,et al.  IgM monoclonal gammopathies of clinical significance: diagnosis and management , 2022, Haematologica.

[2]  A. Rosenwald,et al.  The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms , 2022, Leukemia.

[3]  L. Staudt,et al.  The International Consensus Classification of Mature Lymphoid Neoplasms: A Report from the Clinical Advisory Committee. , 2022, Blood.

[4]  C. Kyriakou,et al.  Guidelines on the diagnosis and management of Waldenström macroglobulinaemia-A British Society for Haematology guideline. , 2022, British journal of haematology.

[5]  S. Treon,et al.  Response and survival predictors in a cohort of 319 patients with Waldenström macroglobulinemia treated with ibrutinib monotherapy , 2021, Blood advances.

[6]  M. Kersten,et al.  Discriminating between Waldenström macroglobulinemia and marginal zone lymphoma using logistic LASSO regression , 2021, Leukemia & lymphoma.

[7]  M. Dimopoulos,et al.  Determination of MYD88L265P mutation fraction in IgM monoclonal gammopathies , 2021, Blood advances.

[8]  O. Bernard,et al.  Cytogenetic and molecular abnormalities in Waldenström's macroglobulinemia patients: Correlations and prognostic impact , 2021, American journal of hematology.

[9]  S. Ferrero,et al.  MYD88L265P Detection in IgM Monoclonal Gammopathies: Methodological Considerations for Routine Implementation , 2021, Diagnostics.

[10]  Marcos González,et al.  6q deletion in Waldenström macroglobulinaemia negatively affects time to transformation and survival , 2020, British journal of haematology.

[11]  S. Opat,et al.  A practical guide to laboratory investigations at diagnosis and follow up in Waldenström macroglobulinaemia: recommendations from the Medical and Scientific Advisory Group, Myeloma Australia, the Pathology Sub-committee of the Lymphoma and Related Diseases Registry and the Australasian Association o , 2020, Pathology (Sydney).

[12]  M. Haun,et al.  Digital PCR in bone marrow trephine biopsies is highly sensitive for MYD88L265P detection in lymphomas with plasmacytic/plasmacytoid differentiation , 2019, British journal of haematology.

[13]  S. Treon,et al.  TP53 mutations are associated with mutated MYD88 and CXCR4, and confer an adverse outcome in Waldenström macroglobulinaemia , 2017, British journal of haematology.

[14]  T. Habermann,et al.  Primary systemic amyloidosis in patients with Waldenström macroglobulinemia , 2018, Leukemia.

[15]  S. Ferrero,et al.  New Molecular Technologies for Minimal Residual Disease Evaluation in B-Cell Lymphoid Malignancies , 2018, Journal of clinical medicine.

[16]  M. Dimopoulos,et al.  Detection of MYD88 and CXCR4 mutations in cell-free DNA of patients with IgM monoclonal gammopathies , 2018, Leukemia.

[17]  M. Huibers,et al.  The use of droplet digital PCR in liquid biopsies: A highly sensitive technique for MYD88 p.(L265P) detection in cerebrospinal fluid , 2018, Hematological oncology.

[18]  M. Boccadoro,et al.  Highly sensitive MYD88L265P mutation detection by droplet digital polymerase chain reaction in Waldenström macroglobulinemia , 2018, Haematologica.

[19]  S. Treon,et al.  MYD88 wild‐type Waldenstrom Macroglobulinaemia: differential diagnosis, risk of histological transformation, and overall survival , 2018, British journal of haematology.

[20]  Marcos González,et al.  Unraveling the heterogeneity of IgM monoclonal gammopathies: a gene mutational and gene expression study , 2018, Annals of Hematology.

[21]  M. Cazzola,et al.  Pattern of somatic mutations in patients with Waldenström macroglobulinemia or IgM monoclonal gammopathy of undetermined significance , 2017, Haematologica.

[22]  B. Quesnel,et al.  TP53 Mutation and Its Prognostic Significance in Waldenstrom's Macroglobulinemia , 2017, Clinical Cancer Research.

[23]  D. Talaulikar,et al.  Role of plasma cells in Waldenström macroglobulinaemia. , 2017, Pathology.

[24]  M. Kersten,et al.  Guideline for the diagnosis, treatment and response criteria for Bing-Neel syndrome , 2017, Haematologica.

[25]  J. Miguel,et al.  Waldenström’s Macroglobulinemia Immunophenotype , 2017 .

[26]  M. Dimopoulos,et al.  Recommendations for the diagnosis and initial evaluation of patients with Waldenström Macroglobulinaemia: A Task Force from the 8th International Workshop on Waldenström Macroglobulinaemia , 2016, British journal of haematology.

[27]  J. Delabie,et al.  Immunoglobulin heavy and light chain gene features are correlated with primary cold agglutinin disease onset and activity , 2016, Haematologica.

[28]  Marcos González,et al.  Origin of Waldenstrom's macroglobulinaemia. , 2016, Best practice & research. Clinical haematology.

[29]  R. Advani,et al.  The World Health Organization Classification of Lymphoid Neoplasms , 2013 .

[30]  S. Treon,et al.  MYD88 Mutations and Response to Ibrutinib in Waldenström's Macroglobulinemia. , 2015, The New England journal of medicine.

[31]  L. Quintanilla‐Martinez,et al.  MYD88 L265P and CXCR4 mutations in lymphoplasmacytic lymphoma identify cases with high disease activity , 2015, British journal of haematology.

[32]  A. Órfão,et al.  The cellular origin and malignant transformation of Waldenström macroglobulinemia. , 2015, Blood.

[33]  M. Cazzola,et al.  Bone marrow assessment in asymptomatic immunoglobulin M monoclonal gammopathies , 2015, British journal of haematology.

[34]  B. Quesnel,et al.  Genomic Landscape of CXCR4 Mutations in Waldenström Macroglobulinemia , 2014, Clinical Cancer Research.

[35]  B. Quesnel,et al.  MYD88 L265P mutation contributes to the diagnosis of Bing Neel syndrome , 2014, British journal of haematology.

[36]  Marcos González,et al.  Detection of MYD88 L265P Mutation by Real-Time Allele-Specific Oligonucleotide Polymerase Chain Reaction , 2014, Applied immunohistochemistry & molecular morphology : AIMM.

[37]  A. Roccaro,et al.  C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma. , 2014, Blood.

[38]  E. Giné,et al.  Mutations in TLR/MYD88 pathway identify a subset of young chronic lymphocytic leukemia patients with favorable outcome. , 2014, Blood.

[39]  S. Rodig,et al.  The WHIM-like CXCR4S338X somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom’s Macroglobulinemia , 2014, Leukemia.

[40]  A. Salar,et al.  Contribution of cerebrospinal fluid sCD19 levels to the detection of CNS lymphoma and its impact on disease outcome. , 2014, Blood.

[41]  S. Treon,et al.  The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. , 2014, Blood.

[42]  N. Lindeman,et al.  Detection of MYD88 L265P in peripheral blood of patients with Waldenström’s Macroglobulinemia and IgM monoclonal gammopathy of undetermined significance , 2014, Leukemia.

[43]  J. Miguel,et al.  Multiparameter flow cytometry for the identification of the Waldenström’s clone in IgM-MGUS and Waldenström’s Macroglobulinemia: new criteria for differential diagnosis and risk stratification , 2014, Leukemia.

[44]  A. Hotz,et al.  Lymphoplasmacytic non-Hodgkin lymphoma/Waldenström's macroglobulinemia with CD5+, CD23+, and CD10- , 2013, Blood research.

[45]  B. Quesnel,et al.  Genome wide SNP array identified multiple mechanisms of genetic changes in Waldenstrom macroglobulinemia , 2013, American journal of hematology.

[46]  A. Brunner,et al.  Improved accuracy of discrimination between IgM Multiple Myeloma and Waldenström Macroglobulinaemia by testing for MYD88 L265P mutations , 2013, British journal of haematology.

[47]  M. Cazzola,et al.  Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenstrom's macroglobulinemia and related lymphoid neoplasms. , 2013, Blood.

[48]  N. Munshi,et al.  MYD88 L265P in Waldenström macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. , 2013, Blood.

[49]  J. Qian,et al.  Development of high-resolution melting analysis for the detection of the MYD88 L265P mutation. , 2013, Clinical biochemistry.

[50]  N. Gutiérrez,et al.  MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenström’s macroglobulinemia , 2013, Leukemia.

[51]  B. Quesnel,et al.  MYD88 L265P mutation in Waldenstrom macroglobulinemia. , 2012, Blood.

[52]  I. Soubeyran,et al.  IGHV gene features and MYD88 L265P mutation separate the three marginal zone lymphoma entities and Waldenström macroglobulinemia/lymphoplasmacytic lymphomas , 2013, Leukemia.

[53]  T. Kalina,et al.  EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols , 2012, Leukemia.

[54]  N. Harris,et al.  MYD88 L265P somatic mutation in Waldenström's macroglobulinemia. , 2012, The New England journal of medicine.

[55]  J. Carpten,et al.  Identification of copy number abnormalities and inactivating mutations in two negative regulators of nuclear factor-kappaB signaling pathways in Waldenstrom's macroglobulinemia. , 2009, Cancer research.

[56]  Dong Chen,et al.  Novel immunophenotypic features of marrow lymphoplasmacytic lymphoma and correlation with Waldenström's macroglobulinemia , 2009, Modern Pathology.

[57]  M. Loken,et al.  Normalization of bone marrow aspirates for hemodilution in flow cytometric analyses , 2009, Cytometry. Part B, Clinical cytometry.

[58]  M. Dimopoulos,et al.  Clinicopathological definition of Waldenstrom's macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom's Macroglobulinemia. , 2003, Seminars in oncology.

[59]  Doug Gurian-Sherman,et al.  Competing interests , 2003, BMJ : British Medical Journal.

[60]  G. Ahmann,et al.  Waldenström macroglobulinemia neoplastic cells lack immunoglobulin heavy chain locus translocations but have frequent 6q deletions. , 2002, Blood.