Hierarchical Bayesian Inference of Photometric Redshifts with Stellar Population Synthesis Models

We present a Bayesian hierarchical framework to analyze photometric galaxy survey data with stellar population synthesis (SPS) models. Our method couples robust modeling of spectral energy distributions with a population model and a noise model to characterize the statistical properties of the galaxy populations and real observations, respectively. By self-consistently inferring all model parameters, from high-level hyperparameters to SPS parameters of individual galaxies, one can separate sources of bias and uncertainty in the data. We demonstrate the strengths and flexibility of this approach by deriving accurate photometric redshifts for a sample of spectroscopically confirmed galaxies in the COSMOS field, all with 26-band photometry and spectroscopic redshifts. We achieve a performance competitive with publicly released photometric redshift catalogs based on the same data. Prior to this work, this approach was computationally intractable in practice due to the heavy computational load of SPS model calls; we overcome this challenge by the addition of neural emulators. We find that the largest photometric residuals are associated with poor calibration for emission-line luminosities and thus build a framework to mitigate these effects. This combination of physics-based modeling accelerated with machine learning paves the path toward meeting the stringent requirements on the accuracy of photometric redshift estimation imposed by upcoming cosmological surveys. The approach also has the potential to create new links between cosmology and galaxy evolution through the analysis of photometric data sets.

[1]  S. Charlot,et al.  Star formation histories of UV-luminous galaxies at z ≃ 6.8: Implications for stellar mass assembly at early cosmic times , 2022, Monthly Notices of the Royal Astronomical Society.

[2]  J. Newman,et al.  Photometric Redshifts for Next-Generation Surveys , 2022, Annual Review of Astronomy and Astrophysics.

[3]  Andrew P. Hearin,et al.  Diffstar: A fully parametric physical model for galaxy assembly history , 2022, Monthly Notices of the Royal Astronomical Society.

[4]  Peter Melchior,et al.  Accelerated Bayesian SED Modeling Using Amortized Neural Posterior Estimation , 2022, The Astrophysical Journal.

[5]  D. Foreman-Mackey,et al.  A Bayesian Population Model for the Observed Dust Attenuation in Galaxies , 2022, The Astrophysical Journal.

[6]  K. Heitmann,et al.  Machine learning synthetic spectra for probabilistic redshift estimation: SYTH-Z , 2021, Monthly Notices of the Royal Astronomical Society.

[7]  G. Zamorani,et al.  COSMOS2020: A Panchromatic View of the Universe to z ∼ 10 from Two Complementary Catalogs , 2021, The Astrophysical Journal Supplement Series.

[8]  Benjamin D. Johnson,et al.  A New Census of the 0.2 < z < 3.0 Universe. II. The Star-forming Sequence , 2021, The Astrophysical Journal.

[9]  R. Laureijs,et al.  Euclid Preparation. XIV. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Data Release 3 , 2021, The Astrophysical Journal Supplement Series.

[10]  J. Frieman,et al.  Dark Energy Survey Year 3 results: redshift calibration of the weak lensing source galaxies , 2020, Monthly Notices of the Royal Astronomical Society.

[11]  J. Frieman,et al.  Dark Energy Survey Year 3 Results: Clustering Redshifts -- Calibration of the Weak Lensing Source Redshift Distributions with redMaGiC and BOSS/eBOSS , 2020, 2012.08569.

[12]  Benjamin D. Johnson,et al.  Stellar Population Inference with Prospector , 2020, The Astrophysical Journal Supplement Series.

[13]  H. Hoekstra,et al.  The PAU Survey: an improved photo-z sample in the COSMOS field , 2020, Monthly Notices of the Royal Astronomical Society.

[14]  G. Bernstein,et al.  Propagating sample variance uncertainties in redshift calibration: simulations, theory, and application to the COSMOS2015 data , 2020, Monthly Notices of the Royal Astronomical Society.

[15]  D. Gerdes,et al.  The impact of spectroscopic incompleteness in direct calibration of redshift distributions for weak lensing surveys , 2020, Monthly Notices of the Royal Astronomical Society.

[16]  Charlie Conroy,et al.  SPECULATOR: Emulating Stellar Population Synthesis for Fast and Accurate Galaxy Spectra and Photometry , 2019, The Astrophysical Journal Supplement Series.

[17]  G. Bernstein,et al.  Redshift inference from the combination of galaxy colours and clustering in a hierarchical Bayesian model – Application to realistic N-body simulations , 2019, 1910.07127.

[18]  Benjamin D. Johnson,et al.  A New Census of the 0.2 < z < 3.0 Universe. I. The Stellar Mass Function , 2019, The Astrophysical Journal.

[19]  M. Salvato,et al.  MAGPHYS+photo-z: Constraining the Physical Properties of Galaxies with Unknown Redshifts , 2019, The Astrophysical Journal.

[20]  Simon P. Wilson,et al.  Estimating redshift distributions using hierarchical logistic Gaussian processes , 2019, Monthly Notices of the Royal Astronomical Society.

[21]  Judith G. Cohen,et al.  The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Analysis and Data Release 2 , 2019, The Astrophysical Journal.

[22]  P. Schneider,et al.  KiDS+VIKING-450: Cosmic shear tomography with optical and infrared data , 2018, Astronomy & Astrophysics.

[23]  Benjamin D. Johnson,et al.  An Older, More Quiescent Universe from Panchromatic SED Fitting of the 3D-HST Survey , 2018, Proceedings of the International Astronomical Union.

[24]  David Alonso,et al.  The LSST Dark Energy Science Collaboration (DESC) Science Requirements Document , 2018, 1809.01669.

[25]  A. Heavens,et al.  Bayesian photometric redshifts of blended sources , 2018, Monthly Notices of the Royal Astronomical Society.

[26]  G. Bernstein,et al.  Redshift inference from the combination of galaxy colours and clustering in a hierarchical Bayesian model , 2018, Monthly Notices of the Royal Astronomical Society.

[27]  D. Hogg,et al.  Hierarchical Modeling and Statistical Calibration for Photometric Redshifts , 2018, The Astrophysical Journal.

[28]  G. Lavaux,et al.  Physical Bayesian modelling of the non-linear matter distribution: New insights into the nearby universe , 2018, Astronomy & Astrophysics.

[29]  G. Hasinger,et al.  The DEIMOS 10K Spectroscopic Survey Catalog of the COSMOS Field , 2018, 1803.09251.

[30]  R. Davé,et al.  Inferring the star formation histories of massive quiescent galaxies with bagpipes: evidence for multiple quenching mechanisms , 2017, Monthly Notices of the Royal Astronomical Society.

[31]  B. Yanny,et al.  Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing , 2017, Physical Review D.

[32]  Andrew J. Connolly,et al.  Photometric Redshifts with the LSST: Evaluating Survey Observing Strategies , 2017, 1706.09507.

[33]  Daniel Masters,et al.  The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Survey Overview and Data Release 1 , 2017, 1704.06665.

[34]  Benjamin D. Johnson,et al.  Nebular Continuum and Line Emission in Stellar Population Synthesis Models , 2016, 1611.08305.

[35]  Ivan K. Baldry,et al.  the-wizz: clustering redshift estimation for everyone , 2016, 1609.09085.

[36]  Benjamin D. Johnson,et al.  Deriving Physical Properties from Broadband Photometry with Prospector: Description of the Model and a Demonstration of its Accuracy Using 129 Galaxies in the Local Universe , 2016, 1609.09073.

[37]  O. Fèvre,et al.  THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.

[38]  H. Peiris,et al.  Hierarchical Bayesian inference of galaxy redshift distributions from photometric surveys , 2016, 1602.05960.

[39]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[40]  D. Foreman-Mackey,et al.  python-fsps: Python bindings to FSPS (v0.1.1) , 2014 .

[41]  R. J. Brunner,et al.  TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests , 2013, 1303.7269.

[42]  T. Budavari,et al.  Clustering-based redshift estimation: method and application to data , 2013, 1303.4722.

[43]  Davis,et al.  Recovering redshift distributions with cross-correlations: pushing the boundaries , 2013, 1303.0292.

[44]  M. White,et al.  On using angular cross-correlations to determine source redshift distributions , 2013, 1302.0857.

[45]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[46]  Zeljko Ivezic,et al.  AGN Dusty Tori. I. Handling of Clumpy Media , 2008, 0806.0511.

[47]  Jeffrey A. Newman,et al.  Calibrating Redshift Distributions beyond Spectroscopic Limits with Cross-Correlations , 2008, 0805.1409.

[48]  S. Maddox,et al.  zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field , 2006, astro-ph/0612291.

[49]  B. Draine,et al.  Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era , 2006, astro-ph/0608003.

[50]  A. Connolly,et al.  Using Galaxy Two-Point Correlation Functions to Determine the Redshift Distributions of Galaxies Binned by Photometric Redshift , 2006, astro-ph/0606098.

[51]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[52]  O. Lahav,et al.  ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks , 2003, astro-ph/0311058.

[53]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[54]  S. M. Fall,et al.  A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.

[55]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[56]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[57]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[58]  D. Alter PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC , 2016 .