Conserved Amino Acid Residues Correlating With Ketoreductase Stereospecificity in Modular Polyketide Synthases

The polyketide group of natural products includes antibiotics, immunosuppressants, anticancer drugs and other valuable bioactive compounds. The biosynthesis of these compounds is an area of considerable interest. Polyketide synthases (PKSs) resemble fatty acid synthases (FASs) and are composed of several different enzymes that assemble carbon chains. An acyltransferase (AT) loads a dicarboxylic acid extender unit onto an acyl carrier protein (ACP), where it undergoes condensation with a starter acyl unit in a reaction catalysed by a ketosynthase (KS). The product is a -ketoacyl intermediate that remains thioester-linked to the ACP. The -ketone group may then be processed by ketoreductase (KR), dehydratase (DH) and enoyl reductase (ER) domains to yield an alcohol, enoyl or methylene group before the extended chain migrates to a KS for another cycle of extension. When the final polyketide chain length is reached, termination occurs, usually accompanied by cyclisation. FASs generally use acetyl starter and malonyl extender units. As a group, PKSs use a wide range of organic acids as starter units, whereas the extenders may be malonyl, methylmalonyl, ethylmalonyl or methoxymalonyl units. The diversity of polyketide structures results in part from combinatorial assembly of different starter and extender units, together with varying degrees of processing of -ketone groups. Chiral centres are introduced by the use of branched extender units and by the reduction of -ketone groups to alcohols. The introduction of chirality increases the potential diversity further. The PKSs that assemble complex polyketides contain a module for every cycle of chain extension. Each module contains the requisite enzymatic domains, which are covalently linked in the order, KS-AT-reduction domain loop-ACP. Three main types of reduction domain loop exist. These contain KR, DH-KR or DHER-KR domains and determine the extent of -ketone group processing in each cycle. [3] a) H. F. Noller, Annu. Rev. Biochem. 1991, 60, 191 ± 227; b) H. F. Noller, V. Hoffarth, L. Zimniak Science 1992, 256, 1416 ± 1419. [4] A. Ferst, Enzyme Structure and Mechanism, W. H. Freeman and Company, New York, 1999, pp. 245 ± 272. [5] T. M. Tarasow, S. L. Tarasow, B. E. Eaton, J. Am. Chem. Soc. 2000, 122, 1015 ± 1021. [6] a) B. Seelig, A. J‰schke Chem. Biol. 1999, 6, 167 ± 176; b) F. Stuhlmann, A. J‰schke J. Am. Chem. Soc. 2002, 124, 3238 ± 3244. [7] a) K. Sakthivel, C. F. Barbas, Angew. Chem. 1998, 110, 2998 ± 3002; Angew. Chem. Int. Ed. 1998, 37, 2872 ± 2875; b) S. A. Benner, T. R. Battersby, B. Eschgfaller, D. Hutter, J. T. Kodra, S. Lutz, T. Arslan, D. K. Baschlin, M. Blattler, M. Egli, C. Hammer, H. A. Held, J. Horlacher, Z. Huang, B. Hyrup, T. F. Jenny, S. C. Jurczyk, M. Konig, U. von Krosigk, M. J. Lutz, L. J. MacPherson, S. E. Moroney, E. Muller, K. P. Nambiar, J. A. Piccirilli, C. Y. Switzer, J. J. Vogel, C. Richert, A. L. Roughton, J. Schmidt, K. C. Schneider, J. Stackhouse, Pure Appl. Chem. 1998, 70, 263 ± 266; c) N. K. Vaish, A. W. Fraley, J. W. Szostak, L. W. McLaughlin, Nucleic Acids Res. 2000, 28, 3316 ± 3322; d) J. Matulic-Adamic, A. T. Daniher, A. Karpeisky, P. Haeberli, D. Sweedler, L. Beigelman, Bioorg. Med. Chem. Lett. 2000, 10, 1299 ± 1302; e) T. Gourlain, A. Sidorov, N. Mignet, S. J. Thorpe, S. E. Lee, J. A. Grasby, D. Williams, Nucleic Acids Res. 2001, 29, 1898 ± 1905; f) D. M. Perrin, T. Garestier, C. J. Helene, J. Am. Chem. Soc. 2001, 123, 1556 ± 1563; g) S. Lutz, P. Burgstaller, S. A. Benner, Nucleic Acids Res. 1999, 27, 2792 ± 2798; h) N. Teramoto, Y. Imanishi, Y. Ito, Bioconjugate Chem. 2000, 11, 744 ± 748; i) O. Thum, S. Jager, M. Famulok, Angew. Chem. 2001, 113, 4112 ± 4115; Angew. Chem. Int. Ed. 2001, 40, 3990 ± 3993. [8] T. W. Wiegand, R. C. Janssen, B. E. Eaton, Chem. Biol. 1997, 4, 675 ± 683. [9] B. Zhang, T. R. Cech, Chem. Biol. 1998, 5, 539 ± 553. [10] G. P. Anderson, K. Shinagawa, Curr. Opin. Anti-Inflammatory Immunomodulatory Invest. Drugs 1999, 1, 29 ± 38. [11] K. A. Davis, B. Abrams, L. Lin, S. D. Jayasena, Nucleic Acids Res. 1996, 24, 702 ± 707. [12] a) T. M. Dewey, C. Zyzniewski, B. E. Eaton, Nucleosides Nucleotides 1996, 15, 1611 ± 1617; b) T. M. Tarasow, B. E. Eaton, Biopolymers 1998, 48, 29 ± 37. [13] A tripeptide-phenylphosphonate similar in structure is known to be an irreversible elastase inhibitor: J. Oleksyszyn, J. C. Powers, Biochemistry 1991, 30, 485 ± 493. [14] M. Illangasekare, G. Sanchez, T. Nickel, M. Yarus, Science 1995, 267, 643 ± 647, and references [8, 9] herein. [15] T. M. Tarasow, T. S. Tarasow, B. E. Eaton, Nature 1997, 389, 54 ± 56. [16] See the Supporting Information. [17] A. B. Burgin, C. Gonzalez, J. Matulic-Adamic, A. M. Karpeisky, N. Usman, J. A. McSwiggen, L. Beigelman, Biochemistry 1996, 35, 14090 ± 14097. [18] a) M. P. Robertson, S. L. Miller, Science 1996, 268, 702 ± 705; b) M. Levy, S. L. Miller, J. Mol. Evolution 1999, 48, 631 ± 637; c) V. M. Kolb, J. P. Dworkin, S. L. Miller, J. Mol. Evol. 1994, 38, 549 ± 557. [19] T. Fitzwater, B. Polisky, Methods Enzymol. 1996, 267, 295 ± 299. [20] a) T. N. M. Schumacher, L. M. Mayr, D. L. Minor Jr. , M. A. Milhollen, M. W. Burgess, P. S. Kim Science 1996, 271, 1854 ± 1857; b) A. Nolte, S. Klu ̊mann, R. Bald, V. A. Erdmann, J. P. F ̧rste, Nat. Biotechnol. 1996, 14, 1116 ± 1119.

[1]  C Richard Hutchinson,et al.  A model of structure and catalysis for ketoreductase domains in modular polyketide synthases. , 2003, Biochemistry.

[2]  J. Staunton,et al.  Polyketide biosynthesis: a millennium review. , 2001, Natural product reports.

[3]  S. Lynch,et al.  Amphotericin biosynthesis in Streptomyces nodosus: deductions from analysis of polyketide synthase and late genes. , 2001, Chemistry & biology.

[4]  D. Cane,et al.  Erythromycin biosynthesis. The 4-pro-S hydride of NADPH is utilized for ketoreduction by both module 5 and module 6 of the 6-deoxyerythronolide B synthase. , 2001, Bioorganic & medicinal chemistry letters.

[5]  P. Leadlay,et al.  Engineering of a minimal modular polyketide synthase, and targeted alteration of the stereospecificity of polyketide chain extension. , 1998, Chemistry & biology.

[6]  D. Cane,et al.  Erythromycin Biosynthesis: The β-Ketoreductase Domains Catalyze the Stereospecific Transfer of the 4-pro-S Hydride of NADPH , 1998 .

[7]  A. Witkowski,et al.  The malonyl/acetyltransferase and beta-ketoacyl synthase domains of the animal fatty acid synthase can cooperate with the acyl carrier protein domain of either subunit. , 1998, Biochemistry.

[8]  P. Leadlay,et al.  The molecular basis of Celmer's rules: the stereochemistry of the condensation step in chain extension on the erythromycin polyketide synthase. , 1997, Biochemistry.

[9]  James Staunton,et al.  Evidence for a double-helical structure for modular polyketide synthases , 1996, Nature Structural Biology.

[10]  P. Leadlay,et al.  Stereospecific acyl transfers on the erythromycin-producing polyketide synthase. , 1994, Science.

[11]  S. Donadio,et al.  Organization of the enzymatic domains in the multifunctional polyketide synthase involved in erythromycin formation in Saccharopolyspora erythraea. , 1992, Gene.

[12]  J B McAlpine,et al.  Modular organization of genes required for complex polyketide biosynthesis. , 1991, Science.

[13]  P. Leadlay,et al.  An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea , 1990, Nature.

[14]  J. Lancelin,et al.  Stereostructure of pimaricin , 1990 .

[15]  R. Zahler Enzyme Structure and Mechanism , 1979, The Yale Journal of Biology and Medicine.

[16]  大村 智 Macrolide antibiotics : chemistry, biology, and practice , 2002 .

[17]  B J Rawlings,et al.  Type I polyketide biosynthesis in bacteria (part B). , 2001, Natural product reports.

[18]  J R Jacobsen,et al.  Tolerance and specificity of polyketide synthases. , 1999, Annual review of biochemistry.

[19]  J. Lancelin,et al.  Complete stereostructure of nystatin A1: A proton NMR study , 1989 .