Ground-Based Passive Microwave Profiling during Dynamic Weather Conditions

Abstract Short-period (1–5 min) temperature and humidity soundings up to 10-km height are retrieved from ground-based 12-channel microwave radiometer profiler (MWRP) observations. In contrast to radiosondes, the radiometric retrievals provide very high temporal resolution (1 min or less) of thermodynamic profiles, but the vertical resolution, which declines in proportion to the height above ground level, is lower. The high temporal resolution is able to resolve detailed meso-γ-scale thermodynamic and limited microphysical features of various rapidly changing mesoscale and/or hazardous weather phenomena. To illustrate the MWRP capabilities and potential benefits to research and operational activities, the authors present example radiometric retrievals from a variety of dynamic weather phenomena including upslope supercooled fog, snowfall, a complex cold front, a nocturnal bore, and a squall line accompanied by a wake low and other rapid variations in low-level water vapor and temperature.

[1]  Li Li,et al.  Microwave radiometric technique to retrieve vapor, liquid and ice. II. Joint studies of radiometer and radar in winter clouds , 1997, IEEE Trans. Geosci. Remote. Sens..

[2]  R. Johns,et al.  Severe Local Storms Forecasting , 1992 .

[3]  Wayne F. Feltz,et al.  Monitoring High-Temporal-Resolution Convective Stability Indices Using the Ground-Based Atmospheric Emitted Radiance Interferometer (AERI) during the 3 May 1999 Oklahoma–Kansas Tornado Outbreak , 2002 .

[4]  Xu Liu,et al.  Physically Retrieving Cloud and Thermodynamic Parameters from Ultraspectral IR Measurements , 2007 .

[5]  S. Clough,et al.  Dry Bias and Variability in Vaisala RS80-H Radiosondes: The ARM Experience , 2003 .

[6]  Susanne Crewell,et al.  Principles of Surface-based Microwave and Millimeter wave Radiometric Remote Sensing of the Troposphere , 2006 .

[7]  E. Westwater,et al.  User's guide to WPL microwave radiative transfer software , 1991 .

[8]  Kenneth S. Gage,et al.  Vertical Structure of Precipitation and Related Microphysics Observed by NOAA Profilers and TRMM during NAME 2004 , 2007 .

[9]  R. H. Clarke,et al.  The Morning Glory of the Gulf of Carpentaria: An Atmospheric Undular Bore , 1981 .

[10]  William L. Smith,et al.  Atmospheric Emitted Radiance Interferometer. Part II: Instrument Performance , 2004 .

[11]  Shepard A. Clough,et al.  The effect of the half-width of the 22-GHz water vapor line on retrievals of temperature and water vapor profiles with a 12-channel microwave radiometer , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[12]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[13]  Barbara G. Brown,et al.  Current Icing Potential: Algorithm Description and Comparison with Aircraft Observations , 2005 .

[14]  Frank S. Marzano,et al.  Combining Microwave Radiometer and Wind Profiler Radar Measurements for High-Resolution Atmospheric Humidity Profiling , 2005 .

[15]  D. Schultz A Review of Cold Fronts with Prefrontal Troughs and Wind Shifts , 2005 .

[16]  K. Knupp,et al.  Mobile Integrated Profiler System (MIPS) Observations of Low-Level Convergent Boundaries during IHOP , 2006 .

[17]  F. Vandenberghe,et al.  4-DIMENSIONAL VARIATIONAL ASSIMILATION OF GROUND-BASED MICROWAVE OBSERVATIONS DURING A WINTER FOG EVENT , 2002 .

[18]  Tammy M. Weckwerth,et al.  The Effect of Small-Scale Moisture Variability on Thunderstorm Initiation , 2000 .

[19]  Richard H. Johnson Surface Mesohighs and Mesolows , 2000 .

[20]  W. Rockwell Geyer,et al.  Gravity currents: In the environment and the laboratory , 1989 .

[21]  William L. Smith,et al.  AIRS: Improving Weather Forecasting and Providing New Data on Greenhouse Gases. , 2006 .

[22]  Frank S. Marzano,et al.  Monitoring of rainfall by ground-based passive microwave systems: models, measurements and applications , 2005 .

[23]  Li Li,et al.  Microwave radiometric technique to retrieve vapor, liquid and ice. I. Development of a neural network-based inversion method , 1997, IEEE Trans. Geosci. Remote. Sens..

[24]  H. Gerber,et al.  Ground-Based FSSP and PVM Measurements of Liquid Water Content , 1999 .

[25]  P. May,et al.  On the Use of 50-MHz RASS in Thunderstorms , 2003 .

[26]  Douglas Hunt,et al.  REAL-TIME WATER VAPOR SENSING WITH SUOMINET -- TODAY AND TOMORROW , 2003 .

[27]  David B. Parsons,et al.  A Review of Convection Initiation and Motivation for IHOP_2002 , 2006 .

[28]  Alexander E. MacDonald,et al.  A Global Profiling System for Improved Weather and Climate Prediction , 2005 .

[29]  Volker Wulfmeyer,et al.  Four-Dimensional Variational Assimilation of Water Vapor Differential Absorption Lidar Data: The First Case Study within IHOP_2002 , 2006 .

[30]  J. C. Liljegren,et al.  Initial evaluation of profiles of temperature, water vapor, and cloud liquid water from a new microwave profiling radiometer. , 2000 .

[31]  Scot M. Loehrer,et al.  Surface Pressure and Precipitation Life Cycle Characteristics of PRE-STORM Mesoscale Convective Systems , 1995 .

[32]  Frank P. Colby,et al.  Convective Inhibition as a Predictor of Convection during AVE-SESAME II , 1984 .

[33]  C. Simmer,et al.  An Integrated Approach toward Retrieving Physically Consistent Profiles of Temperature, Humidity, and Cloud Liquid Water , 2004 .

[34]  D. A. Merritt,et al.  An Automatic Profiler of the Temperature, Wind and Humidity in the Troposphere. , 1983 .

[35]  J. C. Liljegren,et al.  Initial evaluation of profiles of temperature, water vapor and cloud liquid water from a new microwave radiometer , 2001 .

[36]  S. Koch Real-Time Detection of Split Fronts Using Mesoscale Models and WSR-88D Radar Products , 2001 .

[37]  S. H. Melfi,et al.  Structure of an Internal Bore and Dissipating Gravity Current as Revealed by Raman Lidar , 1991 .

[38]  Ed R. Westwater,et al.  A Steerable Dual-Channel Microwave Radiometer for Measurement of Water Vapor and Liquid in the Troposphere , 1983 .

[39]  Yong Han,et al.  Remote Sensing of Tropospheric Water Vapor and Cloud Liquid Water by Integrated Ground-Based Sensors , 1995 .

[40]  D. Wolfe,et al.  Humidity Gradient Profiles from Wind Profiling Radars Using the NOAA/ETL Advanced Signal Processing System (SPS) , 2003 .

[41]  Profiles of radio refractive index and humidity derived from radar wind profilers and the Global Positioning System , 1999 .

[42]  P. Hobbs,et al.  Norwegian-Type and Cold Front Aloft–Type Cyclones East of the Rocky Mountains , 2002 .

[43]  T. Schneider,et al.  EVOLUTION AND CLOUD PROCESSES OF A COLORADO UPSLOPE STORM AS SHOWN BY PROFILING RADIOMETER , RADAR AND TOWER DATA , 2003 .

[44]  William L. Smith,et al.  Near-Continuous Profiling of Temperature, Moisture, and Atmospheric Stability Using the Atmospheric Emitted Radiance Interferometer (AERI) , 2003 .

[45]  J. Güldner,et al.  Remote Sensing of the Thermodynamic State of the Atmospheric Boundary Layer by Ground-Based Microwave Radiometry , 2001 .

[46]  atherine,et al.  Combining UHF radar wind profiler and microwave radiometer for the estimation of atmospheric humidity profiles , 2006 .

[47]  Ed R. Westwater,et al.  Radiometric profiling of temperature, water vapor and cloud liquid water using various inversion methods , 1998 .

[48]  G. Bryan,et al.  A Multimodel Assessment of RKW Theory’s Relevance to Squall-Line Characteristics , 2006 .

[49]  J. C. Liljegren,et al.  A multichannel radiometric profiler of temperature, humidity, and cloud liquid , 2003 .

[50]  D. Raymond A Wave-CISK Model of Squall Lines , 1984 .

[51]  Kevin R. Knupp,et al.  Observational Analysis of a Gust Front to Bore to Solitary Wave Transition within an Evolving Nocturnal Boundary Layer , 2006 .

[52]  N. A. Crook Sensitivity of Moist Convection Forced by Boundary Layer Processes to Low-Level Thermodynamic Fields , 1996 .

[53]  John E. Simpson,et al.  Gravity Currents , 1987 .

[54]  M. Janssen Atmospheric Remote Sensing by Microwave Radiometry , 1993 .

[55]  Paul O. G. Heppner,et al.  Snow versus Rain: Looking beyond the “Magic” Numbers , 1992 .

[56]  V. Ducrocq,et al.  Storm-Scale Numerical Rainfall Prediction for Five Precipitating Events over France: On the Importance of the Initial Humidity Field , 2002 .

[57]  William L. Smith,et al.  Meteorological Applications of Temperature and Water Vapor Retrievals from the Ground-Based Atmospheric Emitted Radiance Interferometer (AERI) , 1998 .

[58]  ÜRGEN,et al.  Temperature and humidity profile retrievals from ground-based microwave radiometers during TUC , 2006 .