Additive Integrals of $q$ -Rung Orthopair Fuzzy Functions

The <inline-formula> <tex-math notation="LaTeX">${q}$ </tex-math></inline-formula>-rung orthopair fuzzy set (<inline-formula> <tex-math notation="LaTeX">${q}$ </tex-math></inline-formula>-ROFS) is a powerful tool to deal with uncertainty and ambiguity in real life. The theoretical basis for processing the continuous <inline-formula> <tex-math notation="LaTeX">${q}$ </tex-math></inline-formula>-rung orthopair fuzzy information is <inline-formula> <tex-math notation="LaTeX">${q}$ </tex-math></inline-formula>-rung orthopair fuzzy calculus (<inline-formula> <tex-math notation="LaTeX">${q}$ </tex-math></inline-formula>-ROFC) and the main object is <inline-formula> <tex-math notation="LaTeX">${q}$ </tex-math></inline-formula>-rung orthopair fuzzy functions (<inline-formula> <tex-math notation="LaTeX">${q}$ </tex-math></inline-formula>-ROFFs). Recently, the authors proposed derivatives and differentials of <inline-formula> <tex-math notation="LaTeX">${q}$ </tex-math></inline-formula>-ROFFs in the framework of <inline-formula> <tex-math notation="LaTeX">${q}$ </tex-math></inline-formula>-ROFC. In this paper, we aim to further study the <inline-formula> <tex-math notation="LaTeX">${q}$ </tex-math></inline-formula>-rung orthopair fuzzy integral (<inline-formula> <tex-math notation="LaTeX">${q}$ </tex-math></inline-formula>-ROFI). It is the most important and fundamental part of the <inline-formula> <tex-math notation="LaTeX">${q}$ </tex-math></inline-formula>-ROFC theoretical system with direct and powerful applications. Our contribution is the indefinite and definite integrals, and bridges the fuzzy calculus theoretical gap of the nonlinear <inline-formula> <tex-math notation="LaTeX">${q}$ </tex-math></inline-formula>-ROFFs. In particular, we begin with the indefinite integral of <inline-formula> <tex-math notation="LaTeX">${q}$ </tex-math></inline-formula>-ROFFs, which can be regarded as the anti-derivatives operations of our previous work. Some of their basic properties are discussed. Next, we give the accurate concept of definite integrals of <inline-formula> <tex-math notation="LaTeX">${q}$ </tex-math></inline-formula>-ROFFs under additive operations, and obtain the explicit integral formula. Some properties of <inline-formula> <tex-math notation="LaTeX">${q}$ </tex-math></inline-formula>-ROFIs, such as comparison, algebraic operations, and mean value theorem are analyzed. Finally, we generalize the <inline-formula> <tex-math notation="LaTeX">${q}$ </tex-math></inline-formula>-ROFI to the case when membership and nonmembership functions are allowed to be correlated. After the theoretical results have been established, we present some numerical examples to demonstrate the rationality and effectiveness of integrating continuous <inline-formula> <tex-math notation="LaTeX">${q}$ </tex-math></inline-formula>-rung orthopair fuzzy data with the <inline-formula> <tex-math notation="LaTeX">${q}$ </tex-math></inline-formula>-ROFIs.

[1]  Zeshui Xu,et al.  Choquet integrals of weighted intuitionistic fuzzy information , 2010, Inf. Sci..

[2]  Davide Ciucci,et al.  Orthopairs: A Simple and Widely UsedWay to Model Uncertainty , 2011, Fundam. Informaticae.

[3]  Huayou Chen,et al.  Intuitionistic Fuzzy Interaction Bonferroni Means and Its Application to Multiple Attribute Decision Making , 2015, IEEE Transactions on Cybernetics.

[4]  Huawen Liu,et al.  Multi-criteria decision-making methods based on intuitionistic fuzzy sets , 2007, Eur. J. Oper. Res..

[5]  Ronald R. Yager,et al.  Pythagorean Membership Grades, Complex Numbers, and Decision Making , 2013, Int. J. Intell. Syst..

[6]  Naif Alajlan,et al.  Approximate reasoning with generalized orthopair fuzzy sets , 2017, Inf. Fusion.

[7]  Peide Liu,et al.  Multiple attribute decision‐making method for dealing with heterogeneous relationship among attributes and unknown attribute weight information under q‐rung orthopair fuzzy environment , 2018, Int. J. Intell. Syst..

[8]  Peihua Qiu,et al.  Fuzzy Modeling and Fuzzy Control , 2006, Technometrics.

[9]  Zeshui Xu,et al.  Intuitionistic Fuzzy Information Aggregation , 2012 .

[10]  Zeshui Xu,et al.  Fundamental properties of intuitionistic fuzzy calculus , 2015, Knowl. Based Syst..

[11]  Peng Wang,et al.  Multiple-Attribute Decision-Making Based on Archimedean Bonferroni Operators of q-Rung Orthopair Fuzzy Numbers , 2019, IEEE Transactions on Fuzzy Systems.

[12]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[13]  Wen Sheng Du,et al.  Minkowski‐type distance measures for generalized orthopair fuzzy sets , 2018, Int. J. Intell. Syst..

[14]  Shyi-Ming Chen,et al.  Multiple-Attribute Group Decision-Making Based on q-Rung Orthopair Fuzzy Power Maclaurin Symmetric Mean Operators , 2020, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[15]  Peng Wang,et al.  Some q‐Rung Orthopair Fuzzy Aggregation Operators and their Applications to Multiple‐Attribute Decision Making , 2018, Int. J. Intell. Syst..

[16]  Xizhao Wang,et al.  A New Approach to Classifier Fusion Based on Upper Integral , 2014, IEEE Transactions on Cybernetics.

[17]  Peide Liu,et al.  Some q‐Rung Orthopai Fuzzy Bonferroni Mean Operators and Their Application to Multi‐Attribute Group Decision Making , 2018, Int. J. Intell. Syst..

[18]  Shyi-Ming Chen,et al.  Group Decision Making Based on Heronian Aggregation Operators of Intuitionistic Fuzzy Numbers , 2017, IEEE Transactions on Cybernetics.

[19]  Krassimir T. Atanassov,et al.  On the Intuitionistic Fuzzy Sets of n-th Type , 2018, Advances in Data Analysis with Computational Intelligence Methods.

[20]  Zeshui Xu,et al.  Definite Integrals of Atanassov's Intuitionistic Fuzzy Information , 2015, IEEE Transactions on Fuzzy Systems.

[21]  Zeshui Xu,et al.  Continuities, Derivatives, and Differentials of $q$-Rung Orthopair Fuzzy Functions , 2019, IEEE Transactions on Fuzzy Systems.

[22]  Zeshui Xu,et al.  Line Integrals of Intuitionistic Fuzzy Calculus and Their Properties , 2018, IEEE Transactions on Fuzzy Systems.

[23]  Ronald R. Yager,et al.  Generalized Orthopair Fuzzy Sets , 2017, IEEE Transactions on Fuzzy Systems.

[24]  Xizhao Wang,et al.  Performance improvement of classifier fusion for batch samples based on upper integral , 2015, Neural Networks.

[25]  Ronald R. Yager,et al.  Pythagorean Membership Grades in Multicriteria Decision Making , 2014, IEEE Transactions on Fuzzy Systems.

[26]  Zeshui Xu,et al.  Relationships Between Two Types of Intuitionistic Fuzzy Definite Integrals , 2016, IEEE Transactions on Fuzzy Systems.

[27]  Harish Garg,et al.  Exponential operation and aggregation operator for q‐rung orthopair fuzzy set and their decision‐making method with a new score function , 2018, Int. J. Intell. Syst..

[28]  Hui Gao,et al.  Some q‐rung orthopair fuzzy Heronian mean operators in multiple attribute decision making , 2018, Int. J. Intell. Syst..