Increased Brain Expression of Matrix Metalloproteinase-9 After Ischemic and Hemorrhagic Human Stroke

Background and Purpose— Abnormal expression of some matrix metalloproteinases (MMP) has shown to play a deleterious role in brain injury in experimental models of cerebral ischemia. We aimed to investigate MMP-2 (gelatinase A) and MMP-9 (gelatinase B) in brain parenchyma in both ischemic and hemorrhagic strokes. Methods— Postmortem fresh brain tissue from 6 ischemic and 8 hemorrhagic stroke patients was obtained within the first 6 hours after death. Finally, 78 brain tissue samples from different areas (infarct, peri-infarct, perihematoma and contralateral hemisphere) were studied. To quantify gelatinase content we performed gelatin zymograms that were confirmed by Western Blot Analysis, immunohistochemistry to localize MMP source, and in situ zymography to detect gelatinase activity. Results— Among ischemic cases, gelatin zymography showed increased MMP-9 content in infarct core although peri-infarct tissue presented also higher levels than contralateral hemisphere (P<0.0001 and P=0.042, respectively). Within infarct core, MMP-9 was mainly located around blood vessels, associated to neutrophil infiltration and activated microglial cells. In peri-infarct areas the major source of MMP-9 were microglial cells. Tissue around intracranial hemorrhage also displayed higher MMP-9 levels than contralateral hemisphere (P=0.008) in close relationship with glial cells. MMP-2 was constitutively expressed and remained invariable in different brain areas. Conclusions— Our results demonstrate in situ higher levels of MMP-9 in human brain tissue after ischemic and hemorrhagic stroke, suggesting a contribution of MMP-9 to ischemic brain injury and perihematoma edema.

[1]  À. Rovira,et al.  A Matrix Metalloproteinase Protein Array Reveals a Strong Relation Between MMP-9 and MMP-13 With Diffusion-Weighted Image Lesion Increase in Human Stroke , 2005, Stroke.

[2]  E. Lo,et al.  Role of Matrix Metalloproteinases in Delayed Neuronal Damage after Transient Global Cerebral Ischemia , 2004, The Journal of Neuroscience.

[3]  I. Campbell,et al.  The TIMPs tango with MMPs and more in the central nervous system , 2004, Journal of neuroscience research.

[4]  Á. Chamorro,et al.  Neutrophil Infiltration Increases Matrix Metalloproteinase-9 in the Ischemic Brain after Occlusion/Reperfusion of the Middle Cerebral Artery in Rats , 2003, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[5]  W. Hacke,et al.  Topographically graded postischemic presence of metalloproteinases is inhibited by hypothermia , 2003, Brain Research.

[6]  C. Molina,et al.  Matrix metalloproteinase-9 concentration after spontaneous intracerebral hemorrhage. , 2003, Journal of neurosurgery.

[7]  D. Corbett,et al.  Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases , 2003, Annals of neurology.

[8]  Á. Chamorro,et al.  Certain Forms of Matrix Metalloproteinase-9 Accumulate in the Extracellular Space after Microdialysis Probe Implantation and Middle Cerebral Artery Occlusion/Reperfusion , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[9]  L. Kaczmarek,et al.  Matrix Metalloproteinase-9 Undergoes Expression and Activation during Dendritic Remodeling in Adult Hippocampus , 2002, The Journal of Neuroscience.

[10]  L. Kaczmarek,et al.  Gelatinase B and TIMP‐1 are regulated in a cell‐ and time‐dependent manner in association with neuronal death and glial reactivity after global forebrain ischemia , 2002, The European journal of neuroscience.

[11]  Taku Sugawara,et al.  Matrix Metalloproteinase Inhibition Prevents Oxidative Stress-Associated Blood–Brain Barrier Disruption after Transient Focal Cerebral Ischemia , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[12]  Y. Okada,et al.  Zymographic analysis of circulating and tissue forms of colon carcinoma gelatinase A (MMP-2) and B (MMP-9) separated by mono- and two-dimensional electrophoresis. , 2001, Matrix biology : journal of the International Society for Matrix Biology.

[13]  C. Justicia,et al.  Expression and Activation of Matrix Metalloproteinase-2 and -9 in Rat Brain after Transient Focal Cerebral Ischemia , 2001, Neurobiology of Disease.

[14]  Y. Miyamoto,et al.  Activation of Matrix Metalloproteinases by Peroxynitrite-induced Protein S-Glutathiolation via Disulfide S-Oxide Formation* , 2001, The Journal of Biological Chemistry.

[15]  J. Arenillas,et al.  Matrix Metalloproteinase Expression After Human Cardioembolic Stroke: Temporal Profile and Relation to Neurological Impairment , 2001, Stroke.

[16]  M. Fini,et al.  Role for Matrix Metalloproteinase 9 after Focal Cerebral Ischemia: Effects of Gene Knockout and Enzyme Inhibition with BB-94 , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[17]  M. Fujimura,et al.  Early appearance of activated matrix metalloproteinase-9 and blood–brain barrier disruption in mice after focal cerebral ischemia and reperfusion , 1999, Brain Research.

[18]  J. Koziol,et al.  Matrix Metalloproteinases Increase Very Early during Experimental Focal Cerebral Ischemia , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[19]  F. Barone,et al.  Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. , 1998, Stroke.

[20]  A. Clark,et al.  Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia , 1997, Neuroscience Letters.

[21]  V. Perry,et al.  Differential matrix metalloproteinase expression in cases of multiple sclerosis and stroke , 1997, Neuropathology and applied neurobiology.

[22]  Gary A. Rosenberg,et al.  Proteolytic Cascade Enzymes Increase in Focal Cerebral Ischemia in Rat , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[23]  D. Douglas,et al.  Computational sequence analysis of matrix metalloproteinases , 1996, Journal of protein chemistry.