A 2-D numerical research on spatial variability of concrete carbonation depth at meso-scale

[1]  V. Baroghel-Bouny Water Vapour Sorption Experiments on Hardened Cementitious Materials: Part I: Essential Tool for Analysis of Hygral Behaviour and its Relation to Pore Structure , 2007 .

[2]  A. Razaqpur,et al.  Finite element modeling of coupled heat transfer, moisture transport and carbonation processes in concrete structures , 2004 .

[3]  Dong-Cheon Park Carbonation of concrete in relation to CO2 permeability and degradation of coatings , 2008 .

[4]  Jian‐Jun Zheng,et al.  A numerical method for the chloride diffusivity in concrete with aggregate shape effect , 2012 .

[5]  Xin Ruan,et al.  Mesoscopic simulation method of concrete carbonation process , 2012 .

[6]  Linbing Wang,et al.  Unified Method to Quantify Aggregate Shape Angularity and Texture Using Fourier Analysis , 2005 .

[7]  Jian‐Jun Zheng,et al.  Simulation of Two-Dimensional Aggregate Distribution with Wall Effect , 2003 .

[8]  J. Ollivier,et al.  Interfacial transition zone in concrete , 1995 .

[9]  Alain Sellier,et al.  COUPLED MOISTURE-CARBON DIOXIDE-CALCIUM TRANSFER MODEL FOR CARBONATION OF CONCRETE , 2004 .

[10]  Michael Böhm,et al.  A two-scale modelling approach to reaction-diffusion processes in porous materials , 2007 .

[11]  Michael N. Fardis,et al.  A reaction engineering approach to the problem of concrete carbonation , 1989 .

[12]  Edward J. Garboczi,et al.  Experimental and simulation studies of the interfacial zone in concrete , 1992 .

[13]  Xianglin Gu,et al.  Numerical analysis of the effect of coarse aggregate distribution on concrete carbonation , 2012 .

[14]  Olaf Kolditz,et al.  A mixed finite element discretization scheme for a concrete carbonation model with concentration-dependent porosity , 2013, J. Comput. Appl. Math..

[15]  U. Angst,et al.  Spatial variability of chloride in concrete within homogeneously exposed areas , 2014 .

[16]  Michael Böhm,et al.  Competition of several carbonation reactions in concrete: a parametric study , 2008 .

[17]  Airong Chen,et al.  Chloride diffusivity of concrete: probabilistic characteristics at meso-scale , 2014 .

[18]  Han-seung Lee,et al.  A model predicting carbonation depth of concrete containing silica fume , 2009 .

[19]  K. Scrivener,et al.  The percolation of pore space in the cement paste/aggregate interfacial zone of concrete , 1996 .

[20]  Michael Böhm,et al.  Dynamics of the internal reaction layer arising during carbonation of concrete , 2007 .

[21]  Torben C. Hansen,et al.  Physical structure of hardened cement paste. A classical approach , 1986 .

[22]  Renato Vitaliani,et al.  2 — D model for carbonation and moisture/heat flow in porous materials , 1995 .

[23]  G. Prokopski,et al.  Interfacial transition zone in cementitious materials , 2000 .

[24]  Malte A. Peter,et al.  Multiscale Modelling of Chemical Degradation Mechanisms in Porous Media with Evolving Microstructure , 2009, Multiscale Model. Simul..

[25]  Mark G. Stewart,et al.  Climate change impact and risks of concrete infrastructure deterioration , 2011 .

[26]  Hamlin M. Jennings,et al.  Model for the Developing Microstructure in Portland Cement Pastes , 1994 .