Integrability and Dynamics of the n-Dimensional Symmetric Veselova Top
暂无分享,去创建一个
Francesco Fassò | Luis C. García-Naranjo | James Montaldi | L. García-Naranjo | J. Montaldi | F. Fassò
[1] B. Jovanović. Rolling balls over spheres in Rn , 2018, 1804.03697.
[2] J. Koiller. Reduction of some classical non-holonomic systems with symmetry , 1992 .
[3] Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic System , 2007, math/0703665.
[4] S. A. Chaplygin. On the theory of motion of nonholonomic systems. The reducing-multiplier theorem , 2008 .
[5] Jeff Moehlis,et al. Equivariant dynamical systems , 2007, Scholarpedia.
[6] A. Veselov,et al. Integrable nonholonomic systems on Lie groups , 1988 .
[7] Yuri N. Fedorov. 2 1 2 A ug 2 00 3 Nonholonomic LR systems as Generalized Chaplygin systems with an Invariant Measure and Geodesic Flows on Homogeneous Spaces ∗ , 2003 .
[8] P. Krishnaprasad,et al. Nonholonomic mechanical systems with symmetry , 1996 .
[9] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[10] Jair Koiller,et al. Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization , 2005 .
[11] Michael Field,et al. Dynamics and Symmetry , 2007 .
[12] Yuri N. Fedorov,et al. Hamiltonization of the generalized Veselova LR system , 2009 .
[13] Tudor S. Ratiu,et al. The motion of the free $n$-dimensional rigid body , 1980 .
[14] B. Jovanović. Rolling balls over spheres in $ \newcommand{\m}{\mathfrak m} {\mathbb{R}^n}$ , 2018, Nonlinearity.
[15] PERIODIC FLOWS, RANK-TWO POISSON STRUCTURES, AND NONHOLONOMIC MECHANICS , 2005 .
[16] Yuri N. Fedorov,et al. Nonholonomic LR Systems as Generalized Chaplygin Systems with an Invariant Measure and Flows on Homogeneous Spaces , 2003, J. Nonlinear Sci..
[17] B. Gajic,et al. Nonholonomic connections, time reparametrizations, and integrability of the rolling ball over a sphere , 2018, Nonlinearity.
[18] Gauge Momenta as Casimir Functions of Nonholonomic Systems , 2016, 1610.05618.
[19] Quasi-periodicity in relative quasi-periodic tori , 2014, 1411.7976.
[20] Francesco Fassò,et al. Conservation of ‘Moving’ Energy in Nonholonomic Systems with Affine Constraints and Integrability of Spheres on Rotating Surfaces , 2015, J. Nonlinear Sci..
[21] Michael Field. Equivariant dynamical systems , 1980 .
[22] Bozidar Jovanovic,et al. Hamiltonization and Integrability of the Chaplygin Sphere in ℝn , 2009, J. Nonlinear Sci..
[23] A. Izosimov. Stability of relative equilibria of multidimensional rigid body , 2012, 1203.3985.
[24] J Hermans,et al. A symmetric sphere rolling on a surface , 1995 .
[25] B. Jovanović. LR and L+R systems , 2009, 0902.1656.