Interferometry following adaptive optics

Adaptive optics systems on single big telescopes correct many modes, allowing imaging in the infra red. At the same time, visible photons can be used as well, especially when infra red light is also employed for wave front sensing. It is argued that pupil-plane interferometry is the most useful application for high-resolution imaging. This is because the isoplanatic patch area and the integration time are larger after correction, and they afford enhanced signal collection in the aperture plane. In contrast, speckle imaging methods only gain indirectly from this enhancement.

[1]  J. C. Dainty,et al.  Iterative blind deconvolution method and its applications , 1988 .

[2]  F. Roddier,et al.  High angular resolution observations of alpha Orionis with a rotation shearing interferometer , 1983 .

[3]  Erez N. Ribak,et al.  Astronomical imaging by filtered weighted-shift-and-add technique , 1986 .

[4]  Jérôme Primot,et al.  Deconvolution from wave-front sensing: a new technique for compensating turbulence-degraded images , 1990 .

[5]  G. Ayers,et al.  Interative blind deconvolution method and its applications. , 1988, Optics Letters.

[6]  F. Roddier,et al.  Interferometric imaging in optical astronomy , 1988 .

[7]  Kazuyoshi Itoh,et al.  Fourier-transform spectral imaging: retrieval of source information from three-dimensional spatial coherence , 1986 .

[8]  A. Lohmann,et al.  Speckle masking in astronomy: triple correlation theory and applications. , 1983, Applied optics.

[9]  F. Roddier,et al.  Twin-image holography with spectrally broad light , 1980 .

[10]  C. Moutou,et al.  PRESENT PERFORMANCE OF THE DARK-SPECKLE CORONAGRAPH , 1998 .

[11]  Francois Roddier,et al.  Adaptive Optics in Astronomy: Imaging through the atmosphere , 2004 .

[12]  Kazuyoshi Itoh,et al.  Interferometric Spectral Imaging and Optical Three-Dimensional Fourier Transformation , 1990 .

[13]  J. Breckinridge,et al.  Coherence interferometer and astronomical applications. , 1972, Applied optics.

[14]  Erez N. Ribak,et al.  Multiple-beam combination for faint objects , 2004, SPIE Astronomical Telescopes + Instrumentation.

[15]  E. Ribak Phase closure with a rotational shear interferometer. , 1987, Applied optics.

[16]  M. Cagigal,et al.  Generalized Fried parameter after adaptive optics partial wave-front compensation , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  E. Ribak,et al.  Shearing stellar interferometer. 1: Digital data analysis scheme. , 1985, Applied optics.

[18]  F Roddier,et al.  Signal-to-noise limitations in white light holography. , 1988, Applied optics.

[19]  Guy S. Perrin,et al.  Aperture masking interferometry and single-mode fibers , 2004, SPIE Astronomical Telescopes + Instrumentation.

[20]  Philip R. Goode,et al.  High-Spatial-Resolution Imaging Combining High-Order Adaptive Optics, Frame Selection, and Speckle Masking Reconstruction , 2005 .

[21]  J. Dainty,et al.  A Coherence Interferometer for Direct Measurement of the Atmospheric Transfer Function , 1974 .

[22]  E. Tatulli,et al.  Single-Mode versus multimode interferometry: a performance study , 2004 .

[23]  J. Mariotti,et al.  Visibility and phase analysis for image and pupil plane interferometry at optical wavelengths , 1986 .

[24]  C. G. Wyne Extending the bandwidth of speckle interferometry , 1979 .

[25]  E. Ribak Phase relations and imaging in pupil plane interferometry. , 1988 .

[26]  K. Knox,et al.  Recovery of Images from Atmospherically Degraded Short-Exposure Photographs , 1974 .