A flexible high-performance simulator for verifying and benchmarking quantum circuits implemented on real hardware

[1]  Guangwen Yang,et al.  Quantum-Teleportation-Inspired Algorithm for Sampling Large Random Quantum Circuits. , 2019, Physical review letters.

[2]  Guangwen Yang,et al.  Quantum Supremacy Circuit Simulation on Sunway TaihuLight , 2018, IEEE Transactions on Parallel and Distributed Systems.

[3]  Xiang Fu,et al.  General-Purpose Quantum Circuit Simulator with Projected Entangled-Pair States and the Quantum Supremacy Frontier. , 2019, Physical review letters.

[4]  Nobuyasu Ito,et al.  Massively parallel quantum computer simulator, eleven years later , 2018, Comput. Phys. Commun..

[5]  S. Benjamin,et al.  QuEST and High Performance Simulation of Quantum Computers , 2018, Scientific Reports.

[6]  U. Vazirani,et al.  On the complexity and verification of quantum random circuit sampling , 2018, Nature Physics.

[7]  Ramis Movassagh,et al.  Efficient unitary paths and quantum computational supremacy: A proof of average-case hardness of Random Circuit Sampling , 2018, 1810.04681.

[8]  L. Duan,et al.  Efficient classical simulation of noisy quantum computation , 2018, 1810.03176.

[9]  A. Harrow,et al.  Approximate Unitary t-Designs by Short Random Quantum Circuits Using Nearest-Neighbor and Long-Range Gates , 2018, Communications in Mathematical Physics.

[10]  Igor L. Markov,et al.  Quantum Supremacy Is Both Closer and Farther than It Appears , 2018, ArXiv.

[11]  Alexandru Paler,et al.  Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity , 2018, Physical Review X.

[12]  Yaoyun Shi,et al.  Classical Simulation of Intermediate-Size Quantum Circuits , 2018, 1805.01450.

[13]  H. Neven,et al.  Low-Depth Quantum Simulation of Materials , 2018 .

[14]  Xia Yang,et al.  64-qubit quantum circuit simulation. , 2018, Science bulletin.

[15]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[16]  H Neven,et al.  A blueprint for demonstrating quantum supremacy with superconducting qubits , 2017, Science.

[17]  H. Neven,et al.  Simulation of low-depth quantum circuits as complex undirected graphical models , 2017, 1712.05384.

[18]  Kevin J. Sung,et al.  Quantum algorithms to simulate many-body physics of correlated fermions. , 2017, 1711.05395.

[19]  John A. Gunnels,et al.  Breaking the 49-Qubit Barrier in the Simulation of Quantum Circuits , 2017, 1710.05867.

[20]  Aram W. Harrow,et al.  Quantum computational supremacy , 2017, Nature.

[21]  Hartmut Neven,et al.  Fourier analysis of sampling from noisy chaotic quantum circuits , 2017, 1708.01875.

[22]  Xun Gao,et al.  Can Chaotic Quantum Circuits Maintain Quantum Supremacy under Noise , 2017, 1706.08913.

[23]  Thomas Häner,et al.  0.5 Petabyte Simulation of a 45-Qubit Quantum Circuit , 2017, SC17: International Conference for High Performance Computing, Networking, Storage and Analysis.

[24]  Scott Aaronson,et al.  Complexity-Theoretic Foundations of Quantum Supremacy Experiments , 2016, CCC.

[25]  Ashley Montanaro,et al.  Achieving quantum supremacy with sparse and noisy commuting quantum computations , 2016, 1610.01808.

[26]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[27]  David Gosset,et al.  Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates. , 2016, Physical review letters.

[28]  Alán Aspuru-Guzik,et al.  qHiPSTER: The Quantum High Performance Software Testing Environment , 2016, ArXiv.

[29]  Ashley Montanaro,et al.  Average-case complexity versus approximate simulation of commuting quantum computations , 2015, Physical review letters.

[30]  Manuela Herman,et al.  Quantum Computing: A Gentle Introduction , 2011 .

[31]  Carlton M. Caves,et al.  Sufficient Conditions for Efficient Classical Simulation of Quantum Optics , 2015, 1511.06526.

[32]  R. Barends,et al.  Digital quantum simulation of fermionic models with a superconducting circuit , 2015, Nature Communications.

[33]  Guy Kindler,et al.  Gaussian Noise Sensitivity and BosonSampling , 2014, ArXiv.

[34]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[35]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[36]  John Preskill,et al.  Quantum computing and the entanglement frontier , 2012, 1203.5813.

[37]  G. Knittel,et al.  QTIB: Quick bit-reversed permutations on CPUs , 2011, 2011 17th International Conference on Digital Signal Processing (DSP).

[38]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[39]  Joseph Emerson,et al.  Scalable and robust randomized benchmarking of quantum processes. , 2010, Physical review letters.

[40]  Ching-Hsien Hsu,et al.  A Practical OpenMP Implementation of Bit-Reversal for Fast Fourier Transform , 2009, Infoscale.

[41]  Yaoyun Shi,et al.  Simulating Quantum Computation by Contracting Tensor Networks , 2005, SIAM J. Comput..

[42]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[43]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[44]  Thomas Lippert,et al.  Massively parallel quantum computer simulator , 2006, Comput. Phys. Commun..

[45]  Anton Lokhmotov,et al.  Brief Announcement: Optimal Bit-Reversal Using Vector Permutations , 2007 .

[46]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[47]  J. Emerson,et al.  Scalable noise estimation with random unitary operators , 2005, quant-ph/0503243.

[48]  Vibhav Gogate,et al.  A Complete Anytime Algorithm for Treewidth , 2004, UAI.

[49]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[50]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.