Gromov Hyperbolicity in Directed Graphs

In this paper, we generalize the classical definition of Gromov hyperbolicity to the context of directed graphs and we extend one of the main results of the theory: the equivalence of the Gromov hyperbolicity and the geodesic stability. This theorem has potential applications to the development of solutions for secure data transfer on the internet.

[1]  A. Portilla,et al.  A characterization of Gromov hyperbolicity of surfaces with variable negative curvature , 2009 .

[2]  V. Schroeder,et al.  A product construction for hyperbolic metric spaces , 2005 .

[3]  J. Koolen,et al.  On the Hyperbolicity of Chordal Graphs , 2001 .

[4]  Michel P. Schellekens,et al.  The Smyth completion: a common foundation for denotational semantics and complexity analysis , 1995, MFPS.

[5]  Jose Maria Sigarreta,et al.  Hyperbolicity and complement of graphs , 2011, Appl. Math. Lett..

[6]  José M. Rodríguez,et al.  On the hyperbolicity of edge-chordal and path-chordal graphs , 2016 .

[7]  I. Holopainen,et al.  p-harmonic functions on graphs and manifolds , 1997 .

[8]  Salvador Romaguera,et al.  Sequence spaces and asymmetric norms in the theory of computational complexity , 2002 .

[9]  Gromov hyperbolic spaces and the sharp isoperimetric constant , 2006, math/0609310.

[10]  E. Jonckheere,et al.  Geometry of network security , 2004, Proceedings of the 2004 American Control Conference.

[11]  Ruth Charney,et al.  Artin groups of finite type are biautomatic , 1992 .

[12]  Quasi-geodesic segments and Gromov hyperbolic spaces , 1996 .

[13]  Jose Maria Sigarreta,et al.  Mathematical Properties on the Hyperbolicity of Interval Graphs , 2017, Symmetry.

[14]  Masahiko Kanai,et al.  Rough isometries, and combinatorial approximations of geometries of non ∙ compact riemannian manifolds , 1985 .

[15]  José M. Rodríguez,et al.  Gromov Hyperbolicity of Riemann Surfaces , 2007 .

[16]  Edmond A. Jonckheere,et al.  Upper bound on scaled Gromov-hyperbolic delta , 2007, Appl. Math. Comput..

[17]  Jacobus H. Koolen,et al.  Hyperbolic Bridged Graphs , 2002, Eur. J. Comb..

[18]  Jose Maria Sigarreta,et al.  On the hyperbolicity constant in graphs , 2011, Discret. Math..

[19]  Yilun Shang Non-Hyperbolicity of Random Graphs with Given Expected Degrees , 2013 .

[20]  José M. Rodríguez,et al.  Gromov hyperbolicity through decomposition of metrics spaces II , 2004 .

[21]  Javier Aramayona,et al.  Simplicial embeddings between pants graphs , 2009, 0901.1745.

[22]  Characterizing hyperbolic spaces and real trees , 2008, 0810.1526.

[23]  Y. Peres,et al.  Markov chains in smooth Banach spaces and Gromov hyperbolic metric spaces , 2004, math/0410422.

[24]  José M. Rodríguez,et al.  Gromov Hyperbolicity in Mycielskian Graphs , 2017, Symmetry.

[25]  Shing-Tung Yau,et al.  Graph homotopy and Graham homotopy , 2001, Discret. Math..

[26]  José M. Rodríguez,et al.  Hyperbolicity of Direct Products of Graphs , 2018, Symmetry.

[27]  Yilun Shang On the likelihood of forests , 2016 .

[28]  Jose Maria Sigarreta,et al.  Hyperbolicity on Graph Operators , 2018, Symmetry.

[29]  Yilun Shang,et al.  Lack of Gromov-hyperbolicity in small-world networks , 2012 .

[30]  Jose Maria Sigarreta,et al.  Computing the hyperbolicity constant , 2011, Comput. Math. Appl..

[31]  Robert D. Kleinberg Geographic Routing Using Hyperbolic Space , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[32]  José M. Rodríguez,et al.  Gromov Hyperbolicity of Periodic Graphs , 2016 .

[33]  E. Tourís Graphs and Gromov hyperbolicity of non-constant negatively curved surfaces , 2011 .

[34]  Joao P. Hespanha,et al.  Preliminary results in routing games , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).