Correlation between transport parameters of ion-exchange membranes

Abstract A deduction of a relation between transport coefficients of ion-exchange membranes is considered by comparison the Kedem–Katchalsky and Onsager forms of transport equations in the framework of irreversible thermodynamics. This relation is analysed by using the experimental data of Narebska et al., Berezina et al., and the results of other authors. Transport equations generalising the Nernst–Planck equation with the coefficients determined directly from the practical transport characteristics are obtained either taking into account or disregarding the above mentioned relation. The Nernst–Einstein relation and its generalizations are discussed.

[1]  A. Narȩbska,et al.  Conductivity of ion-exchange membranes—II. Mobilities of ions and water , 1987 .

[2]  W. Kujawski,et al.  Irreversible thermodynamics of transport across charged membranes , 1987 .

[3]  J. Barthel,et al.  Transport, Relaxation, and Kinetic Processes in Electrolyte Solutions , 1992 .

[4]  A. Narȩbska,et al.  Conductivity of ion-exchange membranes—I. Convection conductivity and other components , 1987 .

[5]  Jiří Koryta ION-Selective Electrodes , 1986 .

[6]  K. S. Spiegler,et al.  Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes , 1966 .

[7]  Victor Nikonenko,et al.  Self diffusion and conductivity in NafionR membranes in contact with NaCl+CaCl2 solutions , 1996 .

[8]  A. Narȩbska,et al.  Permselectivity of ion-exchange membranes in operating systems. Irreversible thermodynamics treatment , 1993 .

[9]  C. Larchet,et al.  Conductivité membranaire: interprétation et exploitation selon le modèle à solution interstitielle hétérogène , 1999 .

[10]  O. Kedem,et al.  Description of the transport of solvent and ions through membranes in terms of differential coefficients. Part 1.—Phenomenological characterization of flows , 1961 .

[11]  C. Gardner,et al.  Comparison of the transport properties of normal and expanded forms of a cation-exchange membrane by use of an irreversible thermodynamic approach. Part I. Membranes in the sodium form in 0·1M-sodium chloride , 1971 .

[12]  R. Buck Kinetics of bulk and interfacial ionic motion: microscopic bases and limits for the nernst—planck equation applied to membrane systems☆ , 1984 .

[13]  A. Kargol Modified Kedem–Katchalsky equations and their applications , 2000 .

[14]  Victor Nikonenko,et al.  Effect of structural membrane inhomogeneity on transport properties , 1993 .

[15]  N. Lakshminarayanaiah,et al.  Transport phenomena in membranes , 1969 .

[16]  N. Kononenko,et al.  Physicochemical principles of testing ion-exchange membranes , 1996 .

[17]  A. Katchalsky,et al.  Thermodynamics of flow processes in biological systems. , 1962, Biophysical journal.

[18]  P. Meares,et al.  Correlation of electrical and permeability properties of ion-selective membranes. , 1969, Biophysical journal.

[19]  J. Klinowski,et al.  Differential conductance coefficients in a cation-exchange membrane , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  B. Auclair,et al.  Etude de la penetration d'un electrolyte fort monovalent dans une membrane echangeuse d'ions: “modele a solution interstitielle heterogene” , 1989 .

[21]  N. Berezina,et al.  Electrolyte diffusion through ion-exchange membranes , 1994 .

[22]  N. Berezina,et al.  Water electrotransport in membrane systems. Experiment and model description , 1994 .

[23]  A. Katchalsky,et al.  Permeability of composite membranes. Part 1.—Electric current, volume flow and flow of solute through membranes , 1963 .

[24]  S. Koter,et al.  Ions and water transport across charged nafion membranes. Irreversible thermodynamics approach , 1984 .

[25]  W. Graydon,et al.  Ion-Exchange Membranes. III. Water Transfer , 1957 .

[26]  R. Carbonell,et al.  Ionic equilibria in ion-exchange membranes: a comparison of pore model predictions with experimental results , 1992 .

[27]  Donald G. Miller Application of Irreversible Thermodynamics to Electrolyte Solutions. I. Determination of Ionic Transport Coefficients lij for Isothermal Vector Transport Processes in Binary Electrolyte Systems1,2 , 1966 .