Improved Distributed Principal Component Analysis
暂无分享,去创建一个
David P. Woodruff | Maria-Florina Balcan | Yingyu Liang | Vandana Kanchanapally | Maria-Florina Balcan | Yingyu Liang | Vandana Kanchanapally | M. Balcan
[1] H. Sebastian Seung,et al. Algorithms for Non-negative Matrix Factorization , 2000, NIPS.
[2] N. Samatova,et al. Principal Component Analysis for Dimension Reduction in Massive Distributed Data Sets ∗ , 2002 .
[3] Jennifer Widom,et al. Adaptive filters for continuous queries over distributed data streams , 2003, SIGMOD '03.
[4] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[5] Franklin T. Luk,et al. Principal Component Analysis for Distributed Data Sets with Updating , 2005, APPT.
[6] Tamás Sarlós,et al. Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[7] Sylvain Raybaud,et al. Distributed Principal Component Analysis for Wireless Sensor Networks , 2008, Sensors.
[8] Gianluca Bontempi,et al. Distributed Principal Component Analysis for Wireless Sensor , 2008 .
[9] Niklas Carlsson,et al. Characterizing web-based video sharing workloads , 2009, WWW '09.
[10] Sergio Valcarcel Macua,et al. Consensus-based distributed principal component analysis in wireless sensor networks , 2010, 2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).
[11] Michael Langberg,et al. A unified framework for approximating and clustering data , 2011, STOC.
[12] Christos Boutsidis,et al. Stochastic Dimensionality Reduction for K-means Clustering , 2011, ArXiv.
[13] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[14] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[15] Christopher Frost,et al. Spanner: Google's Globally-Distributed Database , 2012, OSDI.
[16] David P. Woodruff,et al. Low rank approximation and regression in input sparsity time , 2012, STOC '13.
[17] Huy L. Nguyen,et al. OSNAP: Faster Numerical Linear Algebra Algorithms via Sparser Subspace Embeddings , 2012, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.
[18] Maria-Florina Balcan,et al. Distributed k-means and k-median clustering on general communication topologies , 2013, NIPS.
[19] Paul Mineiro,et al. Combining Structured and Unstructured Randomness in Large Scale PCA , 2013, ArXiv.
[20] Santosh S. Vempala,et al. Nimble Algorithms for Cloud Computing , 2013, ArXiv.
[21] Michael W. Mahoney,et al. Low-distortion subspace embeddings in input-sparsity time and applications to robust linear regression , 2012, STOC '13.
[22] Dan Feldman,et al. Turning big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering , 2013, SODA.
[23] Jeff M. Phillips,et al. Relative Errors for Deterministic Low-Rank Matrix Approximations , 2013, SODA.
[24] Santosh S. Vempala,et al. Principal Component Analysis and Higher Correlations for Distributed Data , 2013, COLT.
[25] Michael B. Cohen,et al. Dimensionality Reduction for k-Means Clustering and Low Rank Approximation , 2014, STOC.