An Energy Conserving Finite Difference Scheme for the Simulation of Collisions in Snare Drums

In this paper, a physics-based model for a snare drum will be discussed, along with its finite difference simulation. The interactions between a mallet and the membrane and between the snares and the membrane will be described as perfectly elastic collisions. A novel numerical scheme for the implementation of collisions will be presented, which allows a complete energy analysis for the whole system. Viscothermal losses will be added to the equation for the 3D wave propagation. Results from simulations and sound examples will be presented.

[1]  Stefan Bilbao,et al.  Time domain simulation and sound synthesis for the snare drum. , 2012, The Journal of the Acoustical Society of America.

[2]  K. H. Hunt,et al.  Coefficient of Restitution Interpreted as Damping in Vibroimpact , 1975 .

[3]  Juliette Chabassier,et al.  Modélisation et simulation numérique d'un piano par modèles physiques , 2012 .

[4]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[5]  Maarten van Walstijn,et al.  Room Acoustics Simulation Using 3-D Compact Explicit FDTD Schemes , 2011, IEEE Transactions on Audio, Speech, and Language Processing.

[6]  A. Chaigne,et al.  Numerical simulations of piano strings. I. A physical model for a struck string using finite difference methods , 1994 .

[7]  D. Greenspan Conservative numerical methods for ẍ = f(x) , 1984 .

[8]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[9]  Stefan Bilbao,et al.  Numerical Modeling of Collisions in Musical Instruments , 2014, 1405.2589.

[10]  Maarten van Walstijn,et al.  An Energy Conserving Finite Difference Scheme for Simulation of Collisions , 2013 .

[11]  Vesa Välimäki,et al.  MODELING A VIBRATING STRING TERMINATED AGAINST A BRIDGE WITH ARBITRARY GEOMETRY , 2013 .

[12]  Antoine Chaigne,et al.  TIME-DOMAIN MODELING AND NUMERICAL SIMULATION OF A KETTLEDRUM , 1999 .

[13]  Joel Augustus Laird,et al.  The physical modelling of drums using digital waveguides , 2001 .

[14]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[15]  Stefan Bilbao,et al.  Computing room acoustics with CUDA - 3D FDTD schemes with boundary losses and viscosity , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[16]  Federico Avanzini,et al.  A Modular Physically Based Approach to the Sound Synthesis of Membrane Percussion Instruments , 2010, IEEE Transactions on Audio, Speech, and Language Processing.

[17]  Stefan Bilbao Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics , 2009 .

[18]  L. Vu-Quoc,et al.  Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .

[19]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[20]  Davide Rocchesso,et al.  MODELING COLLISION SOUNDS: NON-LINEAR CONTACT FORCE , 2001 .

[21]  Stefan Bilbao,et al.  Numerical Experiments with Non-linear Double Membrane Drums , 2013 .