A carbohydrate force field for amber and its application to the study of saccharide to surface adsorption

Abstract An optimized carbohydrate force field for amber is reviewed. Of the changes to the original amber force field, the revised version contains separate charge sets for α and β anomers and can be extended to polysaccharides. It is tested through free energy perturbation and molecular dynamics simulations. This force field is then used to study the adsorption process of α- d -glucose onto a continuum graphite surface by constructing a potential of mean force (PMF) profile of the sugar molecule with the surface. Analyses at various points along the reaction pathway provide useful insights with respect to the sugar and solvent structures.

[1]  W. F. Gunsteren,et al.  The role of computer simulation techniques in protein engineering , 1988 .

[2]  Kenneth M. Merz,et al.  Gas-phase and solution-phase potential energy surfaces for CO2 + nH2O (n = 1,2) , 1990 .

[3]  Mel Rosenberg,et al.  Microbial cell surface hydrophobicity , 1990 .

[4]  John W. Brady,et al.  Molecular dynamics simulations of .alpha.-D-glucose , 1986 .

[5]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[6]  Professor Dr. Werner Nachtigall Biological Mechanisms of Attachment , 1974, Springer Berlin Heidelberg.

[7]  G. Bitton,et al.  Adsorption of microorganisms to surfaces. , 1980 .

[8]  A. D. Crowell,et al.  Interaction Potentials of Simple Nonpolar Molecules with Graphite , 1961 .

[9]  P. Rutter,et al.  Microbial adhesion to surfaces , 1980 .

[10]  John W. Brady,et al.  Molecular dynamics simulations of .alpha.-D-glucose in aqueous solution , 1989 .

[11]  K. Merz,et al.  Conformational preferences for hydroxyl groups in substituted tetrahydropyrans , 1992 .

[12]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .

[13]  J. Brady,et al.  A revised potential-energy surface for molecular mechanics studies of carbohydrates. , 1988, Carbohydrate research.

[14]  W. L. Jorgensen Free energy calculations: a breakthrough for modeling organic chemistry in solution , 1989 .

[15]  H. Berendsen,et al.  ALGORITHMS FOR MACROMOLECULAR DYNAMICS AND CONSTRAINT DYNAMICS , 1977 .

[16]  K. Merz,et al.  Analysis of a large data base of electrostatic potential derived atomic charges , 1992 .

[17]  J. F. Stoddart,et al.  Stereochemistry of carbohydrates , 1971 .

[18]  H. A. Levy,et al.  α-d-Glucose: further refinement based on neutron-diffraction data , 1979 .

[19]  Felix Franks,et al.  Water:A Comprehensive Treatise , 1972 .

[20]  P. Kollman,et al.  An all atom force field for simulations of proteins and nucleic acids , 1986, Journal of computational chemistry.

[21]  S. Angyal Conformational analysis in carbohydrate chemistry. I. Conformational free energies. The conformations and α : β ratios of aldopyranoses in aqueous solution , 1968 .

[22]  Donald G. Truhlar,et al.  Quantum Chemical Conformational Analysis of Glucose in Aqueous Solution , 1993 .

[23]  H. Berendsen,et al.  COMPUTER-SIMULATION OF MOLECULAR-DYNAMICS - METHODOLOGY, APPLICATIONS, AND PERSPECTIVES IN CHEMISTRY , 1990 .

[24]  M Mezei,et al.  Free Energy Simulations a , 1986, Annals of the New York Academy of Sciences.

[25]  J. Brady Molecular dynamics simulations of β-d-glucopyranose , 1987 .

[26]  Kenneth M. Merz,et al.  Study of hydrogen bonding interactions relevant to biomolecular structure and function , 1992 .

[27]  H. A. Levy,et al.  α-D-Glucose: Precise Determination of Crystal and Molecular Structure by Neutron-Diffraction Analysis , 1965, Science.

[28]  Igor Tvaroŝka,et al.  Anomeric and Exo-Anomeric Effects in Carbohydrate Chemistry , 1989 .

[29]  F. Franks Physical chemistry of small carbohydrates - equilibrium solution properties , 1987 .

[30]  Bruce Tidor,et al.  Solvent effect on the anomeric equilibrium in D-glucose: a free energy simulation analysis , 1991 .

[31]  R. Manly Adhesion in biological systems. , 1967, Science.

[32]  M. Karplus,et al.  Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics , 1988 .

[33]  W. L. Jorgensen,et al.  Free energy profiles for sodium cation adsorption on a metal electrode , 1992 .

[34]  William L. Jorgensen,et al.  Molecular dynamics of proteins with the OPLS potential functions. Simulation of the third domain of silver pheasant ovomucoid in water , 1990 .

[35]  J. Valleau,et al.  Water‐like particles at surfaces. II. In a double layer and at a metallic surface , 1987 .

[36]  J. Mccammon,et al.  Dynamics of Proteins and Nucleic Acids , 2018 .

[37]  Peter A. Kollman,et al.  Computer modeling of the interactions of complex molecules , 1990 .

[38]  J. Valleau,et al.  Water‐like particles at surfaces. I. The uncharged, unpolarized surface , 1987 .

[39]  Kenneth M. Merz,et al.  A force field for monosaccharides and (1 → 4) linked polysaccharides , 1994, J. Comput. Chem..

[40]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[41]  D. Beveridge,et al.  Free energy via molecular simulation: applications to chemical and biomolecular systems. , 1989, Annual review of biophysics and biophysical chemistry.