Binary Kloosterman Sums with Value 4

Kloosterman sums have recently become the focus of much research, most notably due to their applications in cryptography and their relations to coding theory. Very recently Mesnager has showed that the value 4 of binary Kloosterman sums gives rise to several infinite classes of bent functions, hyper-bent functions and semi-bent functions in even dimension. In this paper we analyze the different strategies used to find zeros of binary Kloosterman sums to develop and implement an algorithm to find the value 4 of such sums. We then present experimental results showing that the value 4 of binary Kloosterman sums gives rise to bent functions for small dimensions, a case with no mathematical solution so far.

[1]  Gerhard Goos,et al.  Fast Software Encryption , 2001, Lecture Notes in Computer Science.

[2]  Sihem Mesnager,et al.  Semibent Functions From Dillon and Niho Exponents, Kloosterman Sums, and Dickson Polynomials , 2011, IEEE Transactions on Information Theory.

[3]  Stefan Behnel,et al.  Cython: The Best of Both Worlds , 2011, Computing in Science & Engineering.

[4]  R. Harley,et al.  An extension of Satoh's algorithm and its implementation , 2000 .

[5]  Jrg Arndt,et al.  Matters Computational: Ideas, Algorithms, Source Code , 2010 .

[6]  Tsutomu Matsumoto,et al.  Incidence structures for key sharing , 1995 .

[7]  Petr Lisonek,et al.  On the Connection between Kloosterman Sums and Elliptic Curves , 2008, SETA.

[8]  Claude Carlet,et al.  Boolean Functions for Cryptography and Error-Correcting Codes , 2010, Boolean Models and Methods.

[9]  F. Vercauteren Advances in Elliptic Curve Cryptography: Advances in Point Counting , 2005 .

[10]  Tor Helleseth,et al.  Divisibility properties of classical binary Kloosterman sums , 2009, Discret. Math..

[11]  Michael Wiener,et al.  Advances in Cryptology — CRYPTO’ 99 , 1999 .

[12]  Tor Helleseth,et al.  On Z4-Linear Goethals Codes and Kloosterman Sums , 1999, Des. Codes Cryptogr..

[13]  Joseph H. Silverman,et al.  The arithmetic of elliptic curves , 1986, Graduate texts in mathematics.

[14]  A. Enge,et al.  Elliptic Curves and Their Applications to Cryptography , 1999, Springer US.

[15]  M. Deuring Die Typen der Multiplikatorenringe elliptischer Funktionenkörper , 1941 .

[16]  Gregor Leander,et al.  Monomial bent functions , 2006, IEEE Transactions on Information Theory.

[17]  René Schoof,et al.  Nonsingular plane cubic curves over finite fields , 1987, J. Comb. Theory A.

[18]  Sihem Mesnager A New Family of Hyper-Bent Boolean Functions in Polynomial Form , 2009, IMACC.

[19]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[20]  Neal Koblitz,et al.  Constructing Elliptic Curve Cryptosystems in Characteristic 2 , 1990, CRYPTO.

[21]  Hans Dobbertin,et al.  Construction of Bent Functions and Balanced Boolean Functions with High Nonlinearity , 1994, FSE.

[22]  W. Waterhouse,et al.  Abelian varieties over finite fields , 1969 .

[23]  Jeffrey Shallit,et al.  Algorithmic Number Theory , 1996, Lecture Notes in Computer Science.

[24]  J. Dillon Elementary Hadamard Difference Sets , 1974 .

[25]  Frederik Vercauteren,et al.  Point Counting on Elliptic and Hyperelliptic Curves , 2005 .

[26]  O. S. Rothaus,et al.  On "Bent" Functions , 1976, J. Comb. Theory, Ser. A.

[27]  Sihem Mesnager,et al.  A new class of bent and hyper-bent Boolean functions in polynomial forms , 2011, Des. Codes Cryptogr..

[28]  G. Lachaud,et al.  The weights of the orthogonals of the extended quadratic binary Goppa codes , 1990, IEEE Trans. Inf. Theory.

[29]  Ian F. Blake,et al.  Advances in Elliptic Curve Cryptography: Frontmatter , 2005 .

[30]  Andreas Enge,et al.  Elliptic Curves and Their Applications to Cryptography , 1999, Springer US.

[31]  Tanja Lange,et al.  Handbook of Elliptic and Hyperelliptic Curve Cryptography , 2005 .

[32]  Ian F. Blake,et al.  Elliptic curves in cryptography , 1999 .

[33]  K. Gandhi Primes of the form x2 + ny2 , 2012 .

[34]  Kwangjo Kim,et al.  Semi-bent Functions , 1994, ASIACRYPT.

[35]  F. Vercauteren,et al.  Computing Zeta Functions of Curves over Finite Fields , 2008 .

[36]  Guang Gong,et al.  Hyperbent Functions, Kloosterman Sums, and Dickson Polynomials , 2008, IEEE Trans. Inf. Theory.

[37]  Richard P. Brent,et al.  Faster Multiplication in GF(2)[x] , 2008, ANTS.

[38]  Colin Boyd,et al.  Cryptography and Coding , 1995, Lecture Notes in Computer Science.

[39]  Guang Gong,et al.  Constructions of quadratic bent functions in polynomial forms , 2006, IEEE Transactions on Information Theory.

[40]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .