Inactivation of alternative sigma factor 54 (RpoN) leads to increased acid resistance, and alters locus of enterocyte effacement (LEE) expression in Escherichia coli O157 : H7.

Alternative sigma factor 54 (RpoN) is an important regulator of stress resistance and virulence genes in many bacterial species. In this study, we report on the gene expression alterations that follow rpoN inactivation in Escherichia coli O157 : H7 strain Sakai (Sakai rpoN : : kan), and the influence of RpoN on the acid resistance phenotype. Microarray gene expression profiling revealed the differential expression of 103 genes in SakairpoN : : kan relative to Sakai. This included the growth-phase-dependent upregulation of genes required for glutamate-dependent acid resistance (GDAR) ( gadA, gadB, gadC and gadE), and the downregulation of locus of enterocyte effacement (LEE) genes, which encode a type III secretion system. Upregulation of gad genes in SakairpoN : : kan during exponential growth correlated with increased GDAR and survival in a model stomach system. Complementation of SakairpoN : : kan with a cloned version of rpoN restored acid susceptibility. Genes involved in GDAR regulation, including rpoS (sigma factor 38) and gadE (acid-responsive regulator), were shown to be required for the survival of SakairpoN : : kan by the GDAR mechanism. This study describes the contribution of rpoN to acid resistance and GDAR gene regulation, and reveals RpoN to be an important regulator of stress resistance and virulence genes in E. coli O157 : H7.

[1]  A. Ishihama,et al.  Variation in RNA polymerase sigma subunit composition within different stocks of Escherichia coli W3110 , 1997, Journal of bacteriology.

[2]  Catalin C. Barbacioru,et al.  Evaluation of DNA microarray results with quantitative gene expression platforms , 2006, Nature Biotechnology.

[3]  George M Church,et al.  Regulatory network of acid resistance genes in Escherichia coli , 2003, Molecular microbiology.

[4]  A. Strøm,et al.  Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli , 1988, Journal of bacteriology.

[5]  Paolo Visca,et al.  Functional Characterization and Regulation of gadX, a Gene Encoding an AraC/XylS-Like Transcriptional Activator of the Escherichia coli Glutamic Acid Decarboxylase System , 2002, Journal of bacteriology.

[6]  Richard N Armstrong,et al.  Analysis of the structure and function of YfcG from Escherichia coli reveals an efficient and unique disulfide bond reductase. , 2009, Biochemistry.

[7]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[8]  John W. Foster,et al.  Escherichia coli acid resistance: tales of an amateur acidophile , 2004, Nature Reviews Microbiology.

[9]  T. Conway,et al.  Gene Expression Profiling of the pH Response in Escherichia coli , 2002, Journal of bacteriology.

[10]  S. Makino,et al.  The sigma factor RpoN (sigma54) is involved in osmotolerance in Listeria monocytogenes. , 2006, FEMS microbiology letters.

[11]  K. Murphy,et al.  Lambda Red-mediated recombinogenic engineering of enterohemorrhagic and enteropathogenic E. coli , 2003, BMC Molecular Biology.

[12]  J. Kaper,et al.  CHAPTER 12 – The LEE-Encoded Type III Secretion System in EPEC and EHEC: Assembly, Function, and Regulation , 2002 .

[13]  R. Hengge-aronis,et al.  Identification of a central regulator of stationary‐phase gene expression in Escherichia coli , 1991, Molecular microbiology.

[14]  Teresa M. Bergholz,et al.  Variation in acid resistance among enterohaemorrhagic Escherichia coli in a simulated gastric environment , 2007, Journal of applied microbiology.

[15]  Keiji Nagano,et al.  Increased Adherence to Caco-2 Cells Caused by Disruption of the yhiE and yhiF Genes in Enterohemorrhagic Escherichia coli O157:H7 , 2003, Infection and Immunity.

[16]  J. Foster,et al.  pH-Dependent Modulation of Cyclic AMP Levels and GadW-Dependent Repression of RpoS Affect Synthesis of the GadX Regulator and Escherichia coli Acid Resistance , 2003, Journal of bacteriology.

[17]  T. Bergholz,et al.  Global transcriptional response of Escherichia coli O157:H7 to growth transitions in glucose minimal medium , 2007, BMC Microbiology.

[18]  L. Reitzer,et al.  Metabolic Context and Possible Physiological Themes of ς54-Dependent Genes in Escherichia coli , 2001, Microbiology and Molecular Biology Reviews.

[19]  W. Boos,et al.  Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli , 1991, Journal of bacteriology.

[20]  B. Magasanik,et al.  Mutations that create new promoters suppress the sigma 54 dependence of glnA transcription in Escherichia coli , 1987, Journal of bacteriology.

[21]  P. Mead,et al.  Escherichia coli O157:H7 , 1998, The Lancet.

[22]  V. Sperandio,et al.  QseA and GrlR/GrlA Regulation of the Locus of Enterocyte Effacement Genes in Enterohemorrhagic Escherichia coli , 2007, Journal of bacteriology.

[23]  M. Miyazaki,et al.  Massive outbreak of Escherichia coli O157:H7 infection in schoolchildren in Sakai City, Japan, associated with consumption of white radish sprouts. , 1999, American journal of epidemiology.

[24]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  T. Kanai,et al.  Three distinct-type glutathione S-transferases from Escherichia coli important for defense against oxidative stress. , 2006, Journal of biochemistry.

[26]  F. Cabello,et al.  Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN–RpoS regulatory pathway , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  T. Whittam,et al.  Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks , 2008, Proceedings of the National Academy of Sciences.

[28]  H. Schellhorn,et al.  RpoS regulation of gene expression during exponential growth of Escherichia coli K12 , 2008, Molecular Genetics and Genomics.

[29]  R. Kolter,et al.  Stationary-phase-inducible "gearbox" promoters: differential effects of katF mutations and role of sigma 70 , 1991, Journal of bacteriology.

[30]  M. Cashel,et al.  Synthesis of the stationary-phase sigma factor sigma s is positively regulated by ppGpp , 1993, Journal of bacteriology.

[31]  Ilka M. Axmann,et al.  Experimental and computational analysis of transcriptional start sites in the cyanobacterium Prochlorococcus MED4. , 2003, Nucleic acids research.

[32]  H. Chart VTEC enteropathogenicity , 2000, Symposium series.

[33]  R. Hengge-aronis,et al.  Recent insights into the general stress response regulatory network in Escherichia coli. , 2002, Journal of molecular microbiology and biotechnology.

[34]  J H Weiner,et al.  The entericidin locus of Escherichia coli and its implications for programmed bacterial cell death. , 1998, Journal of molecular biology.

[35]  F. Repoila,et al.  Concert of regulators to switch on LEE expression in enterohemorrhagic Escherichia coli O157:H7: interplay between Ler, GrlA, HNS and RpoS. , 2006, International journal of medical microbiology : IJMM.

[36]  M. Valvano,et al.  O-antigen expression in Salmonella enterica serovar Typhi is regulated by nitrogen availability through RpoN-mediated transcriptional control of the rfaH gene. , 2002, Microbiology.

[37]  M. Pallen RpoN‐dependent transcription of rpoH? , 1999, Molecular microbiology.

[38]  P. Model,et al.  Stress-induced expression of the Escherichia coli phage shock protein operon is dependent on sigma 54 and modulated by positive and negative feedback mechanisms. , 1991, Genes & development.

[39]  Nicole T. Perna,et al.  Molecular Evolution of a Pathogenicity Island from Enterohemorrhagic Escherichia coli O157:H7 , 1998, Infection and Immunity.

[40]  Andrew T. Revel,et al.  Analysis of the ospC Regulatory Element Controlled by the RpoN-RpoS Regulatory Pathway in Borrelia burgdorferi , 2005, Journal of bacteriology.

[41]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[42]  John W. Foster,et al.  Control of Acid Resistance inEscherichia coli , 1999, Journal of bacteriology.

[43]  Teresa M. Bergholz,et al.  Recent gene conversions between duplicated glutamate decarboxylase genes (gadA and gadB) in pathogenic Escherichia coli. , 2007, Molecular biology and evolution.

[44]  P. Small,et al.  Acid resistance in enteric bacteria , 1993, Infection and immunity.

[45]  V. Scarlato,et al.  Mechanisms of Transcription Activation Exerted by GadX and GadW at the gadA and gadBC Gene Promoters of the Glutamate-Based Acid Resistance System in Escherichia coli , 2006, Journal of bacteriology.

[46]  R Hengge-Aronis,et al.  Identification and molecular analysis of glgS, a novel growth‐phase‐regulated and rpoS‐dependent gene involved in glycogen synthesis in Escherichia coli , 1992, Molecular microbiology.

[47]  P. Visca,et al.  The response to stationary‐phase stress conditions in Escherichia coli : role and regulation of the glutamic acid decarboxylase system , 1999, Molecular microbiology.

[48]  Teresa M. Bergholz,et al.  Characterization of the Escherichia coli O157:H7 Sakai GadE Regulon , 2008, Journal of bacteriology.

[49]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[50]  A. Roe,et al.  A comparison of enteropathogenic and enterohaemorrhagic Escherichia coli pathogenesis. , 2006, FEMS microbiology letters.

[51]  Yung-Sheng Chang,et al.  Regulation of the Hydrogenase-4 Operon of Escherichia coli by the σ54-Dependent Transcriptional Activators FhlA and HyfR , 2002, Journal of bacteriology.

[52]  P. Cossart,et al.  The rpoN (sigma54) gene from Listeria monocytogenes is involved in resistance to mesentericin Y105, an antibacterial peptide from Leuconostoc mesenteroides , 1997, Journal of bacteriology.

[53]  J. Dworkin,et al.  The Escherichia coli phage‐shock‐protein (psp) operon , 1997, Molecular microbiology.

[54]  S. Kjelleberg,et al.  Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae , 2008, The ISME Journal.

[55]  Teresa M. Large,et al.  Variation in Acid Resistance among Shiga Toxin-Producing Clones of Pathogenic Escherichia coli , 2005, Applied and Environmental Microbiology.

[56]  G. Jovanovic,et al.  tRNA Synthetase Mutants of Escherichia coli K-12 Are Resistant to the Gyrase Inhibitor Novobiocin , 1999, Journal of bacteriology.

[57]  John W. Foster,et al.  Collaborative Regulation of Escherichia coli Glutamate-Dependent Acid Resistance by Two AraC-Like Regulators, GadX and GadW (YhiW) , 2002, Journal of bacteriology.

[58]  L. McCaig,et al.  Food-related illness and death in the United States. , 1999, Emerging infectious diseases.

[59]  X. F. Yang,et al.  Essential Role of the Response Regulator Rrp2 in the Infectious Cycle of Borrelia burgdorferi , 2008, Infection and Immunity.

[60]  A. J. Darwin,et al.  The phage‐shock‐protein response , 2005, Molecular microbiology.

[61]  A. Tramonti,et al.  Antagonistic Role of H-NS and GadX in the Regulation of the Glutamate Decarboxylase-dependent Acid Resistance System in Escherichia coli* , 2005, Journal of Biological Chemistry.

[62]  M. Valvano,et al.  RpoS and RpoN are involved in the growth-dependent regulation of rfaH transcription and O antigen expression in Salmonella enterica serovar Typhi. , 2004, Microbial pathogenesis.

[63]  V. Wendisch,et al.  Genome-Wide Analysis of the General Stress Response Network in Escherichia coli: σS-Dependent Genes, Promoters, and Sigma Factor Selectivity , 2005, Journal of bacteriology.

[64]  T. Whittam,et al.  Pathogenesis and evolution of virulence in enteropathogenic and enterohemorrhagic Escherichia coli. , 2001, The Journal of clinical investigation.

[65]  P. Teunis,et al.  Dose Response for Infection by Escherichia coli O157:H7 from Outbreak Data , 2004, Risk analysis : an official publication of the Society for Risk Analysis.

[66]  S. Iyoda,et al.  ClpXP Protease Controls Expression of the Type III Protein Secretion System through Regulation of RpoS and GrlR Levels in Enterohemorrhagic Escherichia coli , 2005, Journal of bacteriology.

[67]  S. Ueda,et al.  Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: intracellular levels of four species of sigma subunit under various growth conditions , 1996, Journal of bacteriology.