A room-temperature organic polariton transistor

Active optical elements with ever smaller footprint and lower energy consumption are central to modern photonics. The drive for miniaturization, speed and efficiency, with the concomitant volume reduction of the optically active area, has led to the development of devices that harness strong light–matter interactions. By managing the strength of light–matter coupling to exceed losses, quasiparticles, called exciton-polaritons, are formed that combine the properties of the optical fields with the electronic excitations of the active material. By making use of polaritons in inorganic semiconductor microcavities, all-optical transistor functionality was observed, albeit at cryogenic temperatures1. Here, we replace inorganic semiconductors with a ladder-type polymer in an optical microcavity and realize room-temperature operation of a polariton transistor through vibron-mediated stimulated polariton relaxation. We demonstrate net gain of ~10 dB μm−1, sub-picosecond switching time, cascaded amplification and all-optical logic operation at ambient conditions.Net gain of ~10 dB µm–1 and sub-picosecond switching time are shown at room temperature for optical transistors using polymers in a microcavity.

[1]  Ullrich Scherf,et al.  Room-temperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer. , 2014, Nature materials.

[2]  Romuald Houdré,et al.  Exciton–polariton spin switches , 2010 .

[3]  Frank Vewinger,et al.  Bose–Einstein condensation of photons in an optical microcavity , 2010, Nature.

[4]  S. Maier,et al.  Room-temperature superfluidity in a polariton condensate , 2016, Nature Physics.

[5]  G. Lanzani,et al.  Dynamics of higher photoexcited states in m-LPPP probed with sub-20 fs time resolution , 2004 .

[6]  V. Savona,et al.  Bose–Einstein condensation of exciton polaritons , 2006, Nature.

[7]  J. Bloch,et al.  High-temperature ultrafast polariton parametric amplification in semiconductor microcavities , 2001, Nature.

[8]  G. Rocca,et al.  Microscopic theory of polariton lasing via vibronically assisted scattering , 2013, 1306.2222.

[9]  G. Wegmann,et al.  SPONTANEOUS AND STIMULATED EMISSION FROM A LADDER-TYPE CONJUGATED POLYMER , 1999 .

[10]  David G. Lidzey,et al.  Vibrationally Assisted Polariton‐Relaxation Processes in Strongly Coupled Organic‐Semiconductor Microcavities , 2011 .

[11]  Isabelle Sagnes,et al.  Realization of an all optical exciton-polariton router , 2015, 1507.04704.

[12]  S. A. Maier,et al.  Nonlinear interactions in an organic polariton condensate , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[13]  An exciton-polariton laser based on biologically produced fluorescent protein , 2016, Science Advances.

[14]  G. Rocca,et al.  Exciton-phonon scattering and photoexcitation dynamics in J-aggregate microcavities , 2008, 0812.5077.

[15]  A. Lemaître,et al.  Realization of a double-barrier resonant tunneling diode for cavity polaritons. , 2013, Physical review letters.

[16]  Pavlos G. Lagoudakis,et al.  Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities , 2011 .

[17]  Stephen R. Forrest,et al.  Room-temperature polariton lasing in an organic single-crystal microcavity , 2010 .

[18]  Eric Feltin,et al.  Room temperature polariton lasing in a GaN∕AlGaN multiple quantum well microcavity , 2008 .

[19]  B. Deveaud,et al.  Ultrafast tristable spin memory of a coherent polariton gas , 2013, Nature Communications.

[20]  Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity. , 2012, Optics express.

[21]  Ullrich Scherf,et al.  Polyarylenes and poly(arylenevinylene)s, 9 The oxidized states of a (1,4‐phenylene) ladder polymer , 1992 .

[22]  M. S. Skolnick,et al.  Angle-resonant stimulated polariton amplifier , 2000, Physical review letters.

[23]  T. Gao,et al.  Polariton Condensate Transistor Switch , 2012, ArXiv.

[24]  A. Lemaître,et al.  Giant phase modulation in a Mach-Zehnder exciton-polariton interferometer , 2013, 1303.1649.

[25]  Rudolf Hey,et al.  Quantum degenerate exciton-polaritons in thermal equilibrium. , 2006, Physical review letters.

[26]  D. Ballarini,et al.  All-optical polariton transistor , 2012, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[27]  I. Sagnes,et al.  All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer , 2014, Nature Communications.

[28]  P. Lagoudakis,et al.  Longitudinal optical phonon assisted polariton laser , 2010 .