An introduction to radial basis functions for system identification. A comparison with other neural network methods

A look is taken at the use of radial basis functions (RBFs), for nonlinear system identification. RBFs are firstly considered in detail themselves and are subsequently compared with a multi-layered perceptron (MLP), in terms of performance and usage.

[1]  David Lowe,et al.  What have neural networks to offer statistical pattern processing? , 1991, Optics & Photonics.

[2]  Sheng Chen,et al.  Recursive hybrid algorithm for non-linear system identification using radial basis function networks , 1992 .

[3]  Kevin Warwick,et al.  Multivariable cluster analysis for high-speed industrial machinery , 1995 .

[4]  D. Broomhead,et al.  Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .

[5]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[6]  Stephen A. Billings,et al.  International Journal of Control , 2004 .

[7]  D. Lowe,et al.  Adaptive radial basis function nonlinearities, and the problem of generalisation , 1989 .

[8]  Sheng Chen,et al.  Non-linear systems identification using radial basis functions , 1990 .

[9]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[10]  L.O. Chua,et al.  Cellular neural networks , 1993, 1988., IEEE International Symposium on Circuits and Systems.

[11]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[12]  Jean-Jacques E. Slotine,et al.  Stable adaptive control and recursive identification using radial Gaussian networks , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[13]  Sheng Chen,et al.  Practical identification of NARMAX models using radial basis functions , 1990 .

[14]  Peter J. Gawthrop,et al.  Neural networks for control systems - A survey , 1992, Autom..

[15]  Kevin Warwick,et al.  Centre Selection for Radial Basis Function Networks , 1995, ICANNGA.

[16]  Peter Jones,et al.  Signal processing for control , 1986 .

[17]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[18]  M. J. D. Powell,et al.  Radial basis functions for multivariable interpolation: a review , 1987 .

[19]  Kevin Warwick,et al.  Multi-layer radial basis function networks. An extension to the radial basis function , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[20]  Kevin Warwick A critique of neural networks for discrete-time linear control , 1995 .

[21]  James S. Albus,et al.  Data Storage in the Cerebellar Model Articulation Controller (CMAC) , 1975 .