A power penalty approach to numerical solutions of two-asset American options

This paper aims to develop a power penalty method for a linear parabolic variational inequality (VI) in two spatial dimensions governing the two-asset American option valuation. This method yields a two-dimensional nonlinear parabolic PDE containing a power penalty term with penalty constant λ > 1 and a power parameter k > 0. We show that the nonlinear PDE is uniquely solvable and the solution of the PDE converges to that of the VI at the rate of order O (λ−k/2). A fitted finite volume method is designed to solve the nonlinear PDE, and some numerical experiments are performed to illustrate the usefulness of this method. AMS subject classifications: 65M12, 65M60, 91B28

[1]  Alain Bensoussan,et al.  Applications of Variational Inequalities in Stochastic Control , 1982 .

[2]  Michael A. H. Dempster,et al.  LP valuation of exotic American options exploiting structure , 1998 .

[3]  Song Wang,et al.  A Fitted Finite Volume Method for the Valuation of Options on Assets with Stochastic Volatilities , 2006, Computing.

[4]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[5]  P. Panagiotopoulos,et al.  Finite Element Method for Hemivariational Inequalities: Theory, Methods and Applications , 1999 .

[6]  Jaroslav Haslinger,et al.  Finite Element Method for Hemivariational Inequalities , 1999 .

[7]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[8]  D. A. Voss,et al.  A linearly implicit predictor–corrector scheme for pricing American options using a penalty method approach , 2006 .

[9]  Song Wang,et al.  Convergence of a fitted finite volume method for the penalized Black–Scholes equation governing European and American Option pricing , 2007, Numerische Mathematik.

[10]  Peter A. Forsyth,et al.  Penalty methods for American options with stochastic volatility , 1998 .

[11]  P. Glasserman,et al.  Monte Carlo methods for security pricing , 1997 .

[12]  Peter A. Forsyth,et al.  Quadratic Convergence for Valuing American Options Using a Penalty Method , 2001, SIAM J. Sci. Comput..

[13]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[14]  Kok Lay Teo,et al.  Power Penalty Method for a Linear Complementarity Problem Arising from American Option Valuation , 2006 .

[15]  Jong-Shi Pang,et al.  Nonsmooth Equations: Motivation and Algorithms , 1993, SIAM J. Optim..

[16]  Song Wang,et al.  A novel fitted finite volume method for the Black-Scholes equation governing option pricing , 2004 .

[17]  Jürgen Topper,et al.  Financial Engineering with Finite Elements , 2005 .

[18]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .